How to count in hierarchical landscapes

 complexity in the mixed spherical modelsJaron Kent-Dobias
INFN Sezione di Roma I

$\boldsymbol{\Sigma} \boldsymbol{\Phi}$ Conference

11 July 2023

What landscapes?

Gaussian random functions H on the N-dimensional hypersphere with

$$
\overline{H(\boldsymbol{s}) H(\boldsymbol{\sigma})}=\frac{1}{N} f\left(\frac{\boldsymbol{s} \cdot \boldsymbol{\sigma}}{N}\right)
$$

Important to

- Mean-field glass and spin-glass physics (pure and mixed spherical models)
- Inference applied to signal detection (spiked tensor model)

This talk: mixed $p+s$ models of the form

$$
f(q)=\frac{1}{2}\left[\lambda q^{p}+(1-\lambda) q^{s}\right]
$$

How to count stationary points

Number of points given by integral

$$
\mathcal{N}(E, \mu)=\int d \nu(s \mid E, \mu) \sim e^{N \Sigma(E, \mu)}
$$

over Kac-Rice measure
All stationary points...

$$
d \nu(s \mid E, \mu)=\overbrace{\delta(\nabla H(s))|\operatorname{det} \operatorname{Hess} H(s)|}^{\delta(H(s)-N E)} \underbrace{\delta(\operatorname{Tr} \operatorname{Hess} H(s)-N \mu)}_{\text {with energy density } E}
$$

Two ways to average the count to measure complexity:

$$
\underbrace{\Sigma=\frac{1}{N} \overline{\log \mathcal{N}(E, \mu)}}_{\text {'quenched' average }} \leq \underbrace{\Sigma_{\mathrm{a}}=\frac{1}{N} \log \overline{\mathcal{N}(E, \mu)}}_{\text {'annealed' average }}
$$

How to count stationary points

Number of points given by integral

$$
\mathcal{N}(E, \mu)=\int d \nu(s \mid E, \mu) \sim e^{N \Sigma(E, \mu)}
$$

over Kac-Rice measure

$$
d \nu(s \mid E, \mu)=\overbrace{\delta(\nabla H(s)) \mid \operatorname{det} \text { Hess } H(s) \mid}^{\text {All stationary points... }} \underbrace{\delta(H(s)-N E)}_{\text {with energy density } E} \underbrace{\delta(\operatorname{Tr} \operatorname{Hess} H(s)-N \mu)}_{\text {and stability } \mu .}
$$

Two ways to average the count to measure complexity:

$$
\underbrace{\Sigma=\frac{1}{N} \overline{\log \mathcal{N}(E, \mu)}}_{\text {'quenched' average }} \leq \underbrace{\Sigma_{\mathrm{a}}=\frac{1}{N} \log \overline{\mathcal{N}(E, \mu)}}_{\text {'annealed' average }}
$$

How to count stationary points

Number of points given by integral

$$
\mathcal{N}(E, \mu)=\int d \nu(s \mid E, \mu) \sim e^{N \Sigma(E, \mu)}
$$

over Kac-Rice measure
All stationary points...

$$
d \nu(s \mid E, \mu)=\overbrace{\delta(\nabla H(s))|\operatorname{det} \operatorname{Hess} H(s)|}^{\delta(H(s)-N E)} \underbrace{\delta(\operatorname{TrHess} H(s)-N \mu)}_{\text {with energy density } E}
$$

Two ways to average the count to measure complexity:

$$
\underbrace{\Sigma=\frac{1}{N} \overline{\log \mathcal{N}(E, \mu)}}_{\text {'quenched' average }} \leq \underbrace{\Sigma_{\mathrm{a}}=\frac{1}{N} \log \overline{\mathcal{N}(E, \mu)}}_{\text {'annealed' average }}
$$

How to count stationary points

Number of points given by integral

$$
\mathcal{N}(E, \mu)=\int d \nu(s \mid E, \mu) \sim e^{N \Sigma(E, \mu)}
$$

over Kac-Rice measure
All stationary points...

$$
d \nu(s \mid E, \mu)=\overbrace{\delta(\nabla H(s))|\operatorname{det} \operatorname{Hess} H(s)|}^{\delta(H(s)-N E)} \underbrace{\delta(\operatorname{Tr} \operatorname{Hess} H(s)-N \mu)}_{\text {with energy density } E}
$$

Two ways to average the count to measure complexity:

$$
\underbrace{\Sigma=\frac{1}{N} \overline{\log \mathcal{N}(E, \mu)}}_{\text {'quenched' average }} \leq \underbrace{\Sigma_{a}=\frac{1}{N} \log \overline{\mathcal{N}(E, \mu)}}_{\text {'annealed' average }}
$$

How to count stationary points

Number of points given by integral

$$
\mathcal{N}(E, \mu)=\int d \nu(s \mid E, \mu) \sim e^{N \Sigma(E, \mu)}
$$

over Kac-Rice measure
All stationary points...

$$
d \nu(s \mid E, \mu)=\overbrace{\delta(\nabla H(s))|\operatorname{det} \operatorname{Hess} H(s)|}^{\delta(H(s)-N E)} \underbrace{\delta(\operatorname{Tr} \operatorname{Hess} H(s)-N \mu)}_{\text {with energy density } E}
$$

Two ways to average the count to measure complexity:

$$
\underbrace{\Sigma=\frac{1}{N} \overline{\log \mathcal{N}(E, \mu)}}_{\text {'quenched' average }} \leq \underbrace{\Sigma_{a}=\frac{1}{N} \log \overline{\mathcal{N}(E, \mu)}}_{\text {'annealed' average }}
$$

Characterizing stability

Type of point controlled by the stability

$$
\mu=\frac{1}{N} \operatorname{Tr} \text { Hess } H\left(s^{*}\right)
$$

For $\mu<\mu_{\mathrm{m}}$, stationary points are saddles with varying index

For $\mu>\mu_{\mathrm{m}}$, stationary points are minima with varying stiffness

For $\mu=\mu_{\mathrm{m}}$, stationary points are marginal minima

Characterizing stability

Type of point controlled by the stability

$$
\mu=\frac{1}{N} \operatorname{Tr} \text { Hess } H\left(s^{*}\right)
$$

For $\mu<\mu_{\mathrm{m}}$, stationary points are saddles with varying index

For $\mu>\mu_{\mathrm{m}}$, stationary points are minima with varying stiffness

For $\mu=\mu_{\mathrm{m}}$, stationary points are marginal minima

Characterizing stability

Type of point controlled by the stability

$$
\mu=\frac{1}{N} \operatorname{Tr} \operatorname{Hess} H\left(s^{*}\right)
$$

For $\mu<\mu_{\mathrm{m}}$, stationary points are saddles with varying index

For $\mu>\mu_{\mathrm{m}}$, stationary points are minima with varying stiffness

For $\mu=\mu_{\mathrm{m}}$, stationary points are marginal minima

Characterizing stability

Type of point controlled by the stability

$$
\mu=\frac{1}{N} \operatorname{Tr} \text { Hess } H\left(s^{*}\right)
$$

For $\mu<\mu_{\mathrm{m}}$, stationary points are saddles with varying index

For $\mu>\mu_{\mathrm{m}}$, stationary points are minima with varying stiffness

For $\mu=\mu_{\mathrm{m}}$, stationary points are marginal minima

Characterizing stability

Type of point controlled by the stability

$$
\mu=\frac{1}{N} \operatorname{Tr} \text { Hess } H\left(s^{*}\right)
$$

For $\mu<\mu_{\mathrm{m}}$, stationary points are saddles with varying index

For $\mu>\mu_{\mathrm{m}}$, stationary points are minima with varying stiffness

For $\mu=\mu_{\mathrm{m}}$, stationary points are marginal minima

Characterizing stability

Type of point controlled by the stability

$$
\mu=\frac{1}{N} \operatorname{Tr} \operatorname{Hess} H\left(s^{*}\right)
$$

For $\mu<\mu_{\mathrm{m}}$, stationary points are saddles with varying index

For $\mu>\mu_{\mathrm{m}}$, stationary points are minima with varying stiffness

For $\mu=\mu_{\mathrm{m}}$, stationary points are marginal minima

How to count stationary points

After manipulations, (quenched) complexity given by integral over three $n \times n$ matrix order parameters (and two scalar order parameters)

$$
\Sigma(E, \mu)=\frac{1}{N} \lim _{n \rightarrow 0} \frac{\partial}{\partial n} \int d C d R d D d \hat{\beta} d \hat{\mu} e^{n N \mathcal{S}(C, R, D, \hat{\beta}, \hat{\mu})}
$$

C, R, D describe clustering structure of stationary points with (E, μ)

$$
\begin{aligned}
& \mathcal{S}(C, R, D, \hat{\beta}, \hat{\mu})=\mathcal{D}(\mu)+\hat{\beta} E-\frac{1}{2} \hat{\mu}+\frac{1}{n}\left(\frac{1}{2} \hat{\mu} \operatorname{Tr} C-\mu \operatorname{Tr} R\right. \\
& \left.+\frac{1}{2} \sum_{a b}\left[\hat{\beta}^{2} f\left(C_{a b}\right)+\left(2 \hat{\beta} R_{a b}-D_{a b}\right) f^{\prime}\left(C_{a b}\right)+R_{a b}^{2} f^{\prime \prime}\left(C_{a b}\right)\right]+\frac{1}{2} \ln \operatorname{det}\left[\begin{array}{cc}
C & i R \\
i R & D
\end{array}\right]\right)
\end{aligned}
$$

Evaluating integral by method of steepest descent requires finding saddles of \mathcal{S}

HIGH PEAKS

How to count near the ground state

There is an exact correspondence between zero-temperature limit of equilibrium and ground state of complexity:

$$
\lim _{T \rightarrow 0} Q \Longleftrightarrow \lim _{E \rightarrow E_{\mathrm{gs}}}[C, D, R, \hat{\beta}, \hat{\mu}]
$$

If Q is k RSB then C, D, R are $(k-1)$ RSB

Strategy: analytic continuation of ground state order parameters to the entire phase

How to count near the ground state

There is an exact correspondence between zero-temperature limit of equilibrium and ground state of complexity:

$$
\lim _{T \rightarrow 0} Q \Longleftrightarrow \lim _{E \rightarrow E_{\mathrm{gs}}}[C, D, R, \hat{\beta}, \hat{\mu}]
$$

If Q is k RSB then C, D, R are $(k-1)$ RSB

Strategy: analytic continuation of ground state order parameters to the entire phase

How to count near the ground state

There is an exact correspondence between zero-temperature limit of equilibrium and ground state of complexity:

$$
\lim _{T \rightarrow 0} Q \Longleftrightarrow \lim _{E \rightarrow E_{\mathrm{gs}}}[C, D, R, \hat{\beta}, \hat{\mu}]
$$

If Q is k RSB then C, D, R are $(k-1)$ RSB

Strategy: analytic continuation of ground state order parameters to the entire phase

How to count near the ground state

There is an exact correspondence between zero-temperature limit of equilibrium and ground state of complexity:

$$
\lim _{T \rightarrow 0} Q \Longleftrightarrow \lim _{E \rightarrow E_{\mathrm{gs}}}[C, D, R, \hat{\beta}, \hat{\mu}]
$$

If Q is k RSB then C, D, R are $(k-1)$ RSB

Strategy: analytic continuation of ground state order parameters to the entire phase

How to count near the ground state

There is an exact correspondence between zero-temperature limit of equilibrium and ground state of complexity:

$$
\lim _{T \rightarrow 0} Q \Longleftrightarrow \lim _{E \rightarrow E_{\mathrm{gs}}}[C, D, R, \hat{\beta}, \hat{\mu}]
$$

If Q is k RSB then C, D, R are $(k-1)$ RSB

Strategy: analytic continuation of ground state order parameters to the entire phase

How to count near the ground state

There is an exact correspondence between zero-temperature limit of equilibrium and ground state of complexity:

$$
\lim _{T \rightarrow 0} Q \Longleftrightarrow \lim _{E \rightarrow E_{\mathrm{gs}}}[C, D, R, \hat{\beta}, \hat{\mu}]
$$

If Q is k RSB then C, D, R are $(k-1)$ RSB

Strategy: analytic continuation of ground state order parameters to the entire phase

How to count in hierarchical landscapes: 1RSB

Example: $3+16$ model with 2 RSB equilibrium. Annealed complexity predicts saddles at ground state, not minima.

Quenched complexity predicts 1RSB clustering among certain minima and saddles, consistent ground state

A Crisanti and L Leuzzi, "Amorphous-amorphous transition and the two-step replica symmetry breaking phase", Physical Review B 76, 184417 (2007)
JK-D and J Kurchan, "How to count in hierarchical landscapes: a full solution to mean-field complexity", Physical Review E 107, 064111 (2023)

Spherical $3+16$ model: $f(q)=\frac{1}{2}\left(q^{3}+\frac{1}{16} q^{16}\right)$

How to count in hierarchical landscapes: 1RSB

Example: $3+16$ model with 2 RSB equilibrium. Annealed complexity predicts saddles at ground state, not minima.

Quenched complexity predicts 1RSB clustering among certain minima and saddles, consistent ground state

A Crisanti and L Leuzzi, "Amorphous-amorphous transition and the two-step replica symmetry breaking phase", Physical Review B 76, 184417 (2007)
JK-D and J Kurchan, "How to count in hierarchical landscapes: a full solution to mean-field complexity", Physical Review E 107, 064111 (2023)

Spherical $3+16$ model: $f(q)=\frac{1}{2}\left(q^{3}+\frac{1}{16} q^{16}\right)$

How to count in hierarchical landscapes: 1RSB

Example: $3+16$ model with 2 RSB equilibrium. Annealed complexity predicts saddles at ground state, not minima.

Quenched complexity predicts 1RSB clustering among certain minima and saddles, consistent ground state

A Crisanti and L Leuzzi, "Amorphous-amorphous transition and the two-step replica symmetry breaking phase", Physical Review B 76, 184417 (2007)
JK-D and J Kurchan, "How to count in hierarchical landscapes: a full solution to mean-field complexity", Physical Review E 107, 064111 (2023)

Spherical $3+16$ model: $f(q)=\frac{1}{2}\left(q^{3}+\frac{1}{16} q^{16}\right)$

How to count in hierarchical landscapes: 1RSB

Example: $3+16$ model with 2 RSB equilibrium. Annealed complexity predicts saddles at ground state, not minima.

Quenched complexity predicts 1RSB clustering among certain minima and saddles, consistent ground state

[^0]Spherical $3+16$ model: $f(q)=\frac{1}{2}\left(q^{3}+\frac{1}{16} q^{16}\right)$

How to count in hierarchical landscapes: full RSB

Example: $2+4$ model with full RSB equilibrium.

Quenched complexity predicts full RSB clustering among certain minima and saddles, marginal ground state.

A Crisanti and L Leuzzi, "Spherical $2+p$ spin-glass model: an exactly solvable model for glass to spin-glass transition", Physical Review Letters 93, 217203 (2004)

JK-D and J Kurchan, "How to count in hierarchical landscapes: a full solution to mean-field complexity", Physical Review E 107, 064111 (2023)

MOUNTAIN PASSES

MOUNTAIN PASSES

Clustering among saddles

Many models' ground state correctly described by annealed complexity

Quenched complexity shows most clustering among saddles

Can RSB arise when equilibrium is trivial?

Clustering among saddles

Many models' ground state correctly described by annealed complexity

Quenched complexity shows most clustering among saddles

Can RSB arise when equilibrium is trivial?

Clustering among saddles

Many models' ground state correctly described by annealed complexity

Quenched complexity shows most clustering among saddles

Can RSB arise when equilibrium is trivial?

How to find RSB saddles

Spherical $3+16$ model: $f(q)=\frac{1}{2}\left(q^{3}+\frac{1}{16} q^{16}\right)$
1RSB complexity has two order parameters:

- the tightness of clustering q_{1}
- the fraction of unclustered pairs x

On red transition line $x=1$ and $0<q_{1} \leq 1$
At the critical endpoint $x=1$ and $q_{1}=1$
Can search for critical endpoint from the annealed solution by studying eigenvalues of

$$
M=\lim _{x \rightarrow 1} \lim _{q_{1} \rightarrow 1}\left[\begin{array}{cc}
\frac{\partial^{2} \mathcal{S}}{\partial q_{1}^{2}} & \frac{\partial^{2} \mathcal{S}}{\partial x \partial q_{1}} \\
\frac{\partial^{2} \mathcal{S}}{\partial x \partial q_{1}} & \frac{\partial^{2} \mathcal{S}}{\partial x^{2}}
\end{array}\right]
$$

How to find RSB saddles

Spherical $3+16$ model: $f(q)=\frac{1}{2}\left(q^{3}+\frac{1}{16} q^{16}\right)$
1RSB complexity has two order parameters:

- the tightness of clustering q_{1}
- the fraction of unclustered pairs x

On red transition line $x=1$ and $0<q_{1} \leq 1$ At the critical endpoint $x=1$ and $q_{1}=1$

Can search for critical endpoint from the annealed solution by studying eigenvalues of

$$
M=\lim _{x \rightarrow 1} \lim _{q_{1} \rightarrow 1}\left[\begin{array}{cc}
\frac{\partial^{2} \mathcal{S}}{\partial q_{1}^{2}} & \frac{\partial^{2} \mathcal{S}}{\partial x \partial q_{1}} \\
\frac{\partial^{2} \mathcal{S}}{\partial x \partial q_{1}} & \frac{\partial^{2} \mathcal{S}}{\partial x^{2}}
\end{array}\right]
$$

Finding RSB saddles

RSB structure among saddles when $G_{f}>0$ for explicit functional G_{f}
$3+s$ models $f(q)=\frac{1}{2}\left[\lambda q^{3}+(1-\lambda) q^{s}\right]$ have a broad range of RSB among saddles

Includes models where clustering among equilibrium states is forbidden (convex $\left.\chi(q)=f^{\prime \prime}(q)^{-1 / 2}\right)$

JK-D, "When is the average number of saddle points typical?", (2023), arXiv:2306.12752v1 [cond-mat.stat-mech]

RSB among saddles: example

$3+5$ model is forbidden from having clustering between equilibrium states (at most 1 RSB equilibrium order)
Wide range of saddles with highest and lowest index show clustering

Implications for emergence of RSB in equilibrium: splitting of states occurs among saddles, not minima

JK-D, "When is the average number of saddle points typical?", (2023), arXiv:2306.12752v1 [cond-mat.stat-mech]

PLAINS

Importance of marginal minima

Quench dynamics asymptotically approaches marginal minima

In mixed models, the final energy depends on initial conditions

Threshold energy of Cugliandolo-Kurchan (where most stationary points are marginal) appears unimportant

G Folena, S Franz, and F Ricci-Tersenghi, "Rethinking mean-field glassy dynamics and its relation with the energy landscape: the surprising case of the spherical mixed p-spin model'", Physical Review X 10, 031045 (2020)
G Folena and F Zamponi, "On weak ergodicity breaking in mean-field spin glasses", (2023), arXiv:2303.00026v2 [cond-mat.dis-nn]

Two-point complexity

Compare different marginal minima by their local neighborhoods: what other stationary points are they nearby?

$$
\begin{aligned}
& \Sigma_{12}=\frac{1}{N} \int \frac{d \nu\left(\boldsymbol{\sigma} \mid E_{0}, \mu_{0}\right)}{\int d \nu\left(\boldsymbol{\sigma}^{\prime} \mid E_{0}, \mu_{0}\right)} \\
& \quad \times \log \left[\int d \nu\left(\boldsymbol{s} \mid E_{1}, \mu_{1}\right) \delta(N q-\boldsymbol{\sigma} \cdot \boldsymbol{s})\right]
\end{aligned}
$$

Gives complexity of stationary points with (E_{1}, μ_{1}) constrained at overlap q with a reference point with $\left(E_{0}, \mu_{0}\right)$

Neighborhood of marginal minima

$$
\mu_{0}=\mu_{\mathrm{m}}
$$

Properties pivot around debunked threshold $E_{\text {th }}$
Below $E_{\text {th }}$: Neighbors are distant minima, other marginal minima are distant
At E_{th} : Neighbors are other marginal minima, arbitrarily close together
Above E_{th} : Neighbors are close saddles, other marginal minima are distant

Suggests that typical marginal minima are far apart and separated by high barriers: no 'manifold'

JK-D, "Arrangement of nearby minima and saddles in the mixed spherical energy landscapes", (2023), arXiv:2306.12779v1 [cond-mat.dis-nn]

Neighborhood of marginal minima

Properties pivot around debunked threshold $E_{\text {th }}$
Below $E_{\text {th }}$: Neighbors are distant minima, other marginal minima are distant

At $E_{\text {th }}$: Neighbors are other marginal minima, arbitrarily close together

Above $E_{\text {th }}$: Neighbors are close saddles, other marginal minima are distant

Suggests that typical marginal minima are far apart and separated by high barriers: no 'manifold'

JK-D, "Arrangement of nearby minima and saddles in the mixed spherical energy landscapes", (2023), arXiv:2306.12779v1 [cond-mat.dis-nn]

Neighborhood of marginal minima

$$
\mu_{0}=\mu_{\mathrm{m}}
$$

Properties pivot around debunked threshold $E_{\text {th }}$
Below $E_{\text {th }}$: Neighbors are distant minima, other marginal minima are distant

At $E_{\text {th }}$: Neighbors are other marginal minima, arbitrarily close together

Above $E_{\text {th }}$: Neighbors are close saddles, other marginal minima are distant

Suggests that typical marginal minima are far apart and separated by high barriers: no 'manifold'

Neighborhood of marginal minima

$$
\mu_{0}=\mu_{\mathrm{m}}
$$

Properties pivot around debunked threshold $E_{\text {th }}$
Below $E_{\text {th }}$: Neighbors are distant minima, other marginal minima are distant

At $E_{\text {th }}$: Neighbors are other marginal minima, arbitrarily close together

Above $E_{\text {th }}$: Neighbors are close saddles, other marginal minima are distant

Suggests that typical marginal minima are far apart and separated by high barriers: no 'manifold'

Conclusions

Mixed spherical models have rich geometric structure not present in pure ones

- Clustering of deep minima consistent with hierarchical equilibrium order
- Clustering of saddles without any clustering of minima
- Marginally stable minima without a marginal manifold

JK-D and J Kurchan, "How to count in hierarchical landscapes: a full solution to mean-field complexity", Physical Review E 107, 064111 (2023)
JK-D, "When is the average number of saddle points typical?", (2023), arXiv:2306.12752v1 [cond-mat.stat-mech]

JK-D, "Arrangement of nearby minima and saddles in the mixed spherical energy landscapes", (2023), arXiv:2306.12779v1 [cond-mat.dis-nn]

Quenched complexity of mean-field models

Details of calculation

$$
\begin{aligned}
& \overline{\log \mathcal{N}(E, \mu)}=\lim _{n \rightarrow 0} \frac{\partial}{\partial n} \overline{\mathcal{N}(E, \mu)^{n}} \\
& =\lim _{n \rightarrow 0} \frac{\partial}{\partial n} \overline{\int \prod_{a=1}^{n} d s_{a} \delta\left(\nabla H\left(s_{a}\right)\right) \mid \operatorname{det} \text { Hess } H\left(s_{a}\right) \mid} \\
& \overline{\times \delta\left(N E-H\left(s_{a}\right)\right) \delta\left(\operatorname{Tr} \operatorname{Hess} H\left(s_{a}\right)-N \mu\right)} \\
& \text { Function of } H \text { and } \nabla H \text { only. } \\
& \begin{aligned}
=\lim _{n \rightarrow 0} \frac{\partial}{\partial n} \int\left(\prod_{a=1}^{n} d s_{a}\right) & \frac{\overbrace{\prod_{a=1}^{n} \delta\left(\nabla H\left(s_{a}\right)\right) \delta\left(N E-H\left(s_{a}\right)\right)}^{n}}{\prod_{\prod_{a=1}^{n}\left|\operatorname{det} \operatorname{Hess} H\left(s_{a}\right)\right| \delta\left(\operatorname{Tr} \operatorname{Hess} H\left(s_{a}\right)-N \mu\right)}}
\end{aligned}
\end{aligned}
$$

Quenched complexity of mean-field models

Details of calculation

$$
\begin{aligned}
& \left|\operatorname{det} \operatorname{Hess} H\left(s_{a}\right)\right| \delta\left(\operatorname{Tr} \operatorname{Hess} H\left(s_{a}\right)-N \mu\right) \simeq e^{N \mathcal{D}(\mu)} \delta\left(N \mu-s_{a} \cdot \partial H\left(s_{a}\right)\right) \\
& \prod_{a=1}^{n} \delta\left(\nabla H\left(s_{a}\right)\right) \delta\left(N E-H\left(s_{a}\right)\right)=\prod_{a=1}^{n} \int d \hat{\beta} d \hat{s}_{a} e^{i \hat{s}_{a} \cdot \nabla H\left(s_{a}\right)+i \hat{\beta}\left(N E-H\left(s_{a}\right)\right)} \\
& C_{a b}=\frac{1}{N} s_{a} \cdot s_{b} \quad \quad R_{a b}=-i \frac{1}{N} \hat{s}_{a} \cdot s_{b} \quad D_{a b}=\frac{1}{N} \hat{s}_{a} \cdot \hat{s}_{b} \\
& \mathcal{S}=\mathcal{D}(\mu)+\hat{\beta} E-\frac{1}{2} \hat{\mu}+\lim _{n \rightarrow 0} \frac{1}{n}\left(\frac{1}{2} \hat{\mu} \operatorname{Tr} C-\mu \operatorname{Tr} R\right.
\end{aligned}
$$

$$
\left.+\frac{1}{2} \sum_{a b}\left[\hat{\beta}^{2} f\left(C_{a b}\right)+\left(2 \hat{\beta} R_{a b}-D_{a b}\right) f^{\prime}\left(C_{a b}\right)+R_{a b}^{2} f^{\prime \prime}\left(C_{a b}\right)\right]+\frac{1}{2} \ln \operatorname{det}\left[\begin{array}{cc}
C & i R \\
i R & D
\end{array}\right]\right)
$$

Quenched complexity of mean-field models

RS-FRSB transition line

RS-FRSB transition line can be analytically predicted.

1. Treat each function $c(x), r(x), d(x)$ as piecewise linear
2. Substitute into Σ and expand for small $x_{\text {max }}$
3. Look for instability of $x_{\max }=0$ solution.

$$
\mu_{ \pm}(E)= \pm \frac{\left(f^{\prime}(1)+f^{\prime \prime}(0)\right)\left(f^{\prime}(1)^{2}-f(1)\left(f^{\prime}(1)+f^{\prime \prime}(1)\right)\right)}{\left(2 f(1)-f^{\prime}(1)\right) f^{\prime}(1) f^{\prime \prime}(0)^{1 / 2}}-\frac{f^{\prime \prime}(1)-f^{\prime}(1)}{f^{\prime}(1)-2 f(1)} E
$$

Finding RSB saddles

Endpoint (and therefore RSB saddles) exists when $G_{f}>0$ for

$$
\begin{aligned}
& G_{f}=f^{\prime} \log \frac{f^{\prime \prime}}{f^{\prime}}\left[3 y_{f}\left(f^{\prime \prime}-f^{\prime}\right) f^{\prime \prime \prime}-2\left(f^{\prime}-2 f\right) f^{\prime \prime} w_{f}\right]-2\left(f^{\prime \prime}-f^{\prime}\right) u_{f} w_{f}-2 \log ^{2} \frac{f^{\prime \prime}}{f^{\prime}} f^{\prime 2} f^{\prime \prime} v_{f} \\
& \text { where } \quad \begin{array}{rlr}
u_{f} & =f\left(f^{\prime}+f^{\prime \prime}\right)-f^{\prime 2} & v_{f}=f^{\prime}\left(f^{\prime \prime}+f^{\prime \prime \prime}\right)-f^{\prime \prime 2} \\
w_{f} & =2 f^{\prime \prime}\left(f^{\prime \prime}-f^{\prime}\right)+f^{\prime} f^{\prime \prime \prime} & y_{f}=f^{\prime}\left(f^{\prime}-f\right)+f^{\prime \prime} f
\end{array}
\end{aligned}
$$

For $3+s$ models with $f(q)=\frac{1}{2}\left[\lambda q^{3}+(1-\lambda) q^{s}\right]$, very broad range have RSB saddles

Includes models where clustering among equilibrium states is forbidden (convex $\left.\chi(q)=f^{\prime \prime}(q)^{-1 / 2}\right)$

Range of saddle clustering

Clustering among saddles found for most $3+s$ models with $s \geq 5$ and broad range of energies

Phase crosses into minima consistent with presence of RSB ground states

Neighborhood of marginal minima

Below the threshold energy

Neighborhood of marginal minima

At the threshold energy

Neighborhood of marginal minima

Above the threshold energy

[^0]: A Crisanti and L Leuzzi, "Amorphous-amorphous transition and the two-step replica symmetry breaking phase", Physical Review B 76, 184417 (2007)
 JK-D and J Kurchan, "How to count in hierarchical landscapes: a full solution to mean-field complexity", Physical Review E 107, 064111 (2023)

