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What landscapes?

Gaussian random functions H on the
N-dimensional hypersphere with

H(sss)H(σσσ) =
1
N
f
(sss · σσσ

N

)
Important to
▶ Mean-field glass and spin-glass physics

(pure and mixed spherical models)
▶ Inference applied to signal detection

(spiked tensor model)

This talk: mixed p + s models of the form

f (q) =
1
2
[λqp + (1 − λ)qs ]



How to count stationary points

Number of points given by integral

N (E , µ) =

∫
dν(s | E , µ) ∼ eNΣ(E ,µ)

over Kac–Rice measure

dν(s | E , µ) =

All stationary points. . .︷ ︸︸ ︷
δ
(
∇H(s)

) ∣∣ detHessH(s)
∣∣ δ
(
H(s)− NE

)︸ ︷︷ ︸
with energy density E

δ
(
TrHessH(s)− Nµ

)︸ ︷︷ ︸
and stability µ.

Two ways to average the count to measure complexity:

Σ =
1
N
logN (E , µ)︸ ︷︷ ︸

‘quenched’ average

≤ Σa =
1
N

logN (E , µ)︸ ︷︷ ︸
‘annealed’ average



How to count stationary points

Number of points given by integral

N (E , µ) =

∫
dν(s | E , µ) ∼ eNΣ(E ,µ)

over Kac–Rice measure

dν(s | E , µ) =

All stationary points. . .︷ ︸︸ ︷
δ
(
∇H(s)

) ∣∣ detHessH(s)
∣∣ δ
(
H(s)− NE

)︸ ︷︷ ︸
with energy density E

δ
(
TrHessH(s)− Nµ

)︸ ︷︷ ︸
and stability µ.

Two ways to average the count to measure complexity:

Σ =
1
N
logN (E , µ)︸ ︷︷ ︸

‘quenched’ average

≤ Σa =
1
N

logN (E , µ)︸ ︷︷ ︸
‘annealed’ average



How to count stationary points

Number of points given by integral

N (E , µ) =

∫
dν(s | E , µ) ∼ eNΣ(E ,µ)

over Kac–Rice measure

dν(s | E , µ) =

All stationary points. . .︷ ︸︸ ︷
δ
(
∇H(s)

) ∣∣ detHessH(s)
∣∣ δ
(
H(s)− NE

)︸ ︷︷ ︸
with energy density E

δ
(
TrHessH(s)− Nµ

)︸ ︷︷ ︸
and stability µ.

Two ways to average the count to measure complexity:

Σ =
1
N
logN (E , µ)︸ ︷︷ ︸

‘quenched’ average

≤ Σa =
1
N

logN (E , µ)︸ ︷︷ ︸
‘annealed’ average



How to count stationary points

Number of points given by integral

N (E , µ) =

∫
dν(s | E , µ) ∼ eNΣ(E ,µ)

over Kac–Rice measure

dν(s | E , µ) =

All stationary points. . .︷ ︸︸ ︷
δ
(
∇H(s)

) ∣∣ detHessH(s)
∣∣ δ
(
H(s)− NE

)︸ ︷︷ ︸
with energy density E

δ
(
TrHessH(s)− Nµ

)︸ ︷︷ ︸
and stability µ.

Two ways to average the count to measure complexity:

Σ =
1
N
logN (E , µ)︸ ︷︷ ︸

‘quenched’ average

≤ Σa =
1
N

logN (E , µ)︸ ︷︷ ︸
‘annealed’ average



How to count stationary points

Number of points given by integral

N (E , µ) =

∫
dν(s | E , µ) ∼ eNΣ(E ,µ)

over Kac–Rice measure

dν(s | E , µ) =

All stationary points. . .︷ ︸︸ ︷
δ
(
∇H(s)

) ∣∣ detHessH(s)
∣∣ δ
(
H(s)− NE

)︸ ︷︷ ︸
with energy density E

δ
(
TrHessH(s)− Nµ

)︸ ︷︷ ︸
and stability µ.

Two ways to average the count to measure complexity:

Σ =
1
N
logN (E , µ)︸ ︷︷ ︸

‘quenched’ average

≤ Σa =
1
N

logN (E , µ)︸ ︷︷ ︸
‘annealed’ average



Characterizing stability

Type of point controlled by the stability

µ =
1
N

TrHessH(s∗)

For µ < µm, stationary points are saddles
with varying index

For µ > µm, stationary points are minima
with varying stiffness

For µ = µm, stationary points are marginal
minima

λ

p(λ)

μ

μm
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How to count stationary points

After manipulations, (quenched) complexity given by integral over three n × n matrix
order parameters (and two scalar order parameters)

Σ(E , µ) =
1
N

lim
n→0

∂

∂n

∫
dC dR dD d β̂ d µ̂ enNS(C ,R,D,β̂,µ̂)

C , R , D describe clustering structure of stationary points with (E , µ)

S(C ,R,D, β̂, µ̂) = D(µ) + β̂E − 1
2
µ̂+

1
n

(
1
2
µ̂TrC − µTrR

+
1
2

∑
ab

[
β̂2f (Cab) + (2β̂Rab − Dab)f

′(Cab) + R2
abf

′′(Cab)
]
+

1
2
ln det

[
C iR
iR D

])

Evaluating integral by method of steepest descent requires finding saddles of S





How to count near the ground state

There is an exact correspondence between zero-temperature limit of equilibrium and
ground state of complexity:

lim
T→0

Q ⇐⇒ lim
E→Egs

[C ,D,R, β̂, µ̂]

If Q is kRSB then C , D, R are (k − 1)RSB

Strategy: analytic continuation of ground state order parameters to the entire phase
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How to count in hierarchical landscapes: 1RSB

Example: 3 + 16 model with 2RSB
equilibrium. Annealed complexity predicts
saddles at ground state, not minima.

Quenched complexity predicts 1RSB
clustering among certain minima and
saddles, consistent ground state

A Crisanti and L Leuzzi, “Amorphous-amorphous transition and the
two-step replica symmetry breaking phase”, Physical Review B 76,
184417 (2007)

JK-D and J Kurchan, “How to count in hierarchical landscapes: a
full solution to mean-field complexity”, Physical Review E 107,
064111 (2023)

Spherical 3 + 16 model: f (q) = 1
2 (q

3 + 1
16q

16)
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https://doi.org/10.1103/physrevb.76.184417
https://doi.org/10.1103/PhysRevE.107.064111
https://doi.org/10.1103/PhysRevE.107.064111
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How to count in hierarchical landscapes: full RSB

Example: 2 + 4 model with full RSB
equilibrium.

Quenched complexity predicts full RSB
clustering among certain minima and
saddles, marginal ground state.

A Crisanti and L Leuzzi, “Spherical 2 + p spin-glass model: an
exactly solvable model for glass to spin-glass transition”, Physical
Review Letters 93, 217203 (2004)

JK-D and J Kurchan, “How to count in hierarchical landscapes: a
full solution to mean-field complexity”, Physical Review E 107,
064111 (2023)

2 + 4 model: f (q) = 1
2 (q

2 + 1
16q

4)
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https://doi.org/10.1103/physrevlett.93.217203
https://doi.org/10.1103/PhysRevE.107.064111
https://doi.org/10.1103/PhysRevE.107.064111






Clustering among saddles

3 + 4 model: f (q) = 1
2 (q

3 + q4)
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Eth Many models’ ground
state correctly
described by annealed
complexity

Quenched complexity
shows most clustering
among saddles

Can RSB arise when
equilibrium is trivial?
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How to find RSB saddles

1RSB complexity has two order parameters:

▶ the tightness of clustering q1

▶ the fraction of unclustered pairs x

On red transition line x = 1 and 0 < q1 ≤ 1

At the critical endpoint x = 1 and q1 = 1

Can search for critical endpoint from the
annealed solution by studying eigenvalues of

M = lim
x→1

lim
q1→1

[
∂2S
∂q2

1

∂2S
∂x∂q1

∂2S
∂x∂q1

∂2S
∂x2

]

Spherical 3 + 16 model: f (q) = 1
2 (q

3 + 1
16q
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Finding RSB saddles

RSB structure among saddles when Gf > 0
for explicit functional Gf

3 + s models f (q) = 1
2 [λq

3 + (1 − λ)qs ]
have a broad range of RSB among saddles

Includes models where clustering among
equilibrium states is forbidden (convex
χ(q) = f ′′(q)−1/2)

JK-D, “When is the average number of saddle points typical?”,
(2023), arXiv:2306.12752v1 [cond-mat.stat-mech]

f (q) = 1
2 [λq

3 + (1 − λ)qs ]

4 6 8 10 12 14 16
0.0
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1.0

s

λ
RSB

complexity Non-convex χ

RSB T = 0

http://arxiv.org/abs/2306.12752v1
https://arxiv.org/abs/2306.12752v1


RSB among saddles: example

3 + 5 model is forbidden from having
clustering between equilibrium states
(at most 1RSB equilibrium order)

Wide range of saddles with highest and
lowest index show clustering

Implications for emergence of RSB in
equilibrium: splitting of states occurs
among saddles, not minima

JK-D, “When is the average number of saddle points typical?”,
(2023), arXiv:2306.12752v1 [cond-mat.stat-mech]

3 + 5 model: f (q) = 1
4 (q

3 + q5)
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Importance of marginal minima

Quench dynamics asymptotically
approaches marginal minima

In mixed models, the final energy depends
on initial conditions

Threshold energy of Cugliandolo–Kurchan
(where most stationary points are marginal)
appears unimportant

G Folena, S Franz, and F Ricci-Tersenghi, “Rethinking mean-field
glassy dynamics and its relation with the energy landscape: the
surprising case of the spherical mixed p-spin model”, Physical
Review X 10, 031045 (2020)

G Folena and F Zamponi, “On weak ergodicity breaking in
mean-field spin glasses”, (2023), arXiv:2303.00026v2
[cond-mat.dis-nn]

3 + 4 model: f (q) = 1
2 (q
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Two-point complexity

Compare different marginal minima by their
local neighborhoods: what other stationary
points are they nearby?

Σ12 =
1
N

∫
dν(σσσ | E0, µ0)∫
dν(σσσ′ | E0, µ0)

× log

[∫
dν(sss | E1, µ1) δ(Nq − σσσ · sss)

]
Gives complexity of stationary points with
(E1, µ1) constrained at overlap q with a
reference point with (E0, µ0)



Neighborhood of marginal minima

Properties pivot around debunked threshold Eth

Below Eth: Neighbors are distant minima, other
marginal minima are distant

At Eth: Neighbors are other marginal minima, arbitrarily
close together

Above Eth: Neighbors are close saddles, other marginal
minima are distant

Suggests that typical marginal minima are far apart and
separated by high barriers: no ‘manifold’

JK-D, “Arrangement of nearby minima and saddles in the mixed spherical energy
landscapes”, (2023), arXiv:2306.12779v1 [cond-mat.dis-nn]
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separated by high barriers: no ‘manifold’

JK-D, “Arrangement of nearby minima and saddles in the mixed spherical energy
landscapes”, (2023), arXiv:2306.12779v1 [cond-mat.dis-nn]
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Conclusions

Mixed spherical models have rich geometric
structure not present in pure ones

▶ Clustering of deep minima consistent
with hierarchical equilibrium order

▶ Clustering of saddles without any
clustering of minima

▶ Marginally stable minima without a
marginal manifold

JK-D and J Kurchan, “How to count in
hierarchical landscapes: a full solution to
mean-field complexity”, Physical Review E 107,
064111 (2023)

JK-D, “When is the average number of saddle
points typical?”, (2023), arXiv:2306.12752v1
[cond-mat.stat-mech]

JK-D, “Arrangement of nearby minima and
saddles in the mixed spherical energy
landscapes”, (2023), arXiv:2306.12779v1
[cond-mat.dis-nn]
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Quenched complexity of mean-field models
Details of calculation

logN (E , µ) = lim
n→0

∂

∂n
N (E , µ)n

= lim
n→0

∂

∂n

∫ n∏
a=1

dsa δ
(
∇H(sa)

) ∣∣ detHessH(sa)
∣∣

×δ
(
NE − H(sa)

)
δ
(
TrHessH(sa)− Nµ

)

= lim
n→0

∂

∂n

∫ ( n∏
a=1

dsa

) Function of H and ∇H only.︷ ︸︸ ︷
n∏

a=1

δ
(
∇H(sa)

)
δ
(
NE − H(sa)

)
×

n∏
a=1

∣∣ detHessH(sa)
∣∣ δ(TrHessH(sa)− Nµ

)
︸ ︷︷ ︸

Function of HessH only.



Quenched complexity of mean-field models
Details of calculation

∣∣ detHessH(sa)
∣∣ δ(TrHessH(sa)− Nµ

)
≃ eND(µ)δ

(
Nµ− sa · ∂H(sa)

)
n∏

a=1

δ
(
∇H(sa)

)
δ
(
NE − H(sa)

)
=

n∏
a=1

∫
d β̂ dŝa e

i ŝa·∇H(sa)+i β̂
(
NE−H(sa)

)

Cab =
1
N

sa · sb Rab = −i
1
N

ŝa · sb Dab =
1
N

ŝa · ŝb

S = D(µ) + β̂E − 1
2
µ̂+ lim

n→0

1
n

(
1
2
µ̂TrC − µTrR

+
1
2

∑
ab

[
β̂2f (Cab) + (2β̂Rab − Dab)f

′(Cab) + R2
abf

′′(Cab)
]
+

1
2
ln det

[
C iR
iR D

])



Quenched complexity of mean-field models
RS–FRSB transition line
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xmax

c

RS–FRSB transition line can be analytically predicted.
1. Treat each function c(x), r(x), d(x) as piecewise

linear
2. Substitute into Σ and expand for small xmax

3. Look for instability of xmax = 0 solution.

µ±(E ) = ±(f ′(1) + f ′′(0))(f ′(1)2 − f (1)(f ′(1) + f ′′(1)))
(2f (1)− f ′(1))f ′(1)f ′′(0)1/2

− f ′′(1)− f ′(1)
f ′(1)− 2f (1)

E



Finding RSB saddles

Endpoint (and therefore RSB saddles) exists when Gf > 0 for

Gf = f ′ log
f ′′

f ′
[
3yf (f ′′−f ′)f ′′′−2(f ′−2f )f ′′wf

]
−2(f ′′−f ′)uf wf −2 log2 f ′′

f ′
f ′2f ′′vf

where uf = f (f ′ + f ′′)− f ′2 vf = f ′(f ′′ + f ′′′)− f ′′2

wf = 2f ′′(f ′′ − f ′) + f ′f ′′′ yf = f ′(f ′ − f ) + f ′′f

For 3 + s models with f (q) = 1
2 [λq

3 + (1 − λ)qs ],
very broad range have RSB saddles

Includes models where clustering among equilibrium
states is forbidden (convex χ(q) = f ′′(q)−1/2)

JK-D, “When is the average number of saddle points typical?”, (2023),
arXiv:2306.12752v1 [cond-mat.stat-mech]
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Range of saddle clustering

Clustering among saddles found for most 3 + s
models with s ≥ 5 and broad range of energies

Phase crosses into minima consistent with presence
of RSB ground states 4 6 8 10 12 14 16
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Neighborhood of marginal minima
Below the threshold energy
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Neighborhood of marginal minima
At the threshold energy
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Neighborhood of marginal minima
Above the threshold energy
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