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The energy landscape and its geometry are thought to influence glassy behavior
via the proliferation of metastable states. However, the distribution and proper-
ties of these states is only understood in the simplest mean-field models. We
show how to count states with different properties in slightly more complicated
mean-field models. We also share preliminary results on the relative arrangement
of nearby states.

Counting different types of states
The mixed spherical models are a family of mean-field glass models contain-

ing all isotropic Gaussian functions on the N -dimensional hypersphere. Inside
this family, virtually any hierarchical structure (type of RSB) can be found. Each
member model is defined by the covariance between the energy at two points
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We take f (q ) = 1

2(apq
p + asq

s) and call the result the “q + s model.”
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We count stationary points, where +H = 0, including minima, maxima, and saddle
points. In these models, stationary points have two important properties: their
energy E = H /N and their index (the number of unstable directions). We use a
proxy for index: the stability µ, which fixes the eigenvalue spectrum of the Hes-
sian. The spectrum touches zero at the marginal stability µm. When µ < µm, the
stationary point is a saddle with many downward directions, and when µ > µm it
is a minimum.

We show how to count stationary points in two models with nontrivial hier-
archy of states: a 3 + 16 model with 2RSB in equilibrium, and a 2 + 4 model
with full RSB in equilibrium. Generically, finite kRSB in equilibrium corresponds
with (k − 1)RSB of the ground state structure, so we expect the structure of the
metastable states to usually be at most (k − 1)RSB.
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This plot shows the complexity (the logarithm of the number of states) with given
properties for the 3 + 16 model. Dashed lines show the annealed solution, which
is sometimes not correct, and solid lines show the 1RSB solution. An RSB phase
begins at high energy densities among high-index saddles, eventually extending
to a small subset of minima above the marginal stability.

In this model, the threshold energy Eth, where most stationary points are
marginal, is significantly below the algorithmic limit Ealg, where no smooth dy-
namics can pass. This is a conclusive example of a situation where the thresh-
old, once thought to be significant for long-time dynamics, is actually irrelevant
to the dynamics.
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This plot shows the phases of structure in the 2 + 4 model, where the red region
now denotes a full RSB solution. This solution correctly predicts the location of
the ground state, which is marginal as expected. The lines on this plot were pro-
duced with a 20RSB approximation.

Relative arrangement of the states

On the left, we counted states. But more geometric information is possible! Given
a state σσσ with certain properties, how many states of other properties lie a fixed
distance away? Instead of distance we use the overlap q , which is the normalized
dot product of the two state vectors.

This has been computed for the simplest models, and we extend this work to
the simplest of the mixed models. Here, we focus on a model with f (q ) = 1

2(q
3+q4),

with a 1RSB equilibrium and a replica-symmetric complexity.
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Requiring that states lie nearby each other can qualitatively change their spec-
trum. Since the condition of proximity produces only a rank-one modification of
the Hessian matrix, the continuous part of the spectrum is not affected. How-
ever, an isolated eigenvalue can be forced from the bulk by the conditioning,
potentially destabilizing what would otherwise look like a minimum. When this
happens, the associated eigenvector is typically correlated with the direction
between the two nearby states.
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These plots show the neighbors of a stable reference minimum. The left plot
shows the most common states with given energy and overlap, while the left
shows the most common states with given stability and overlap. The shaded
regions show the behavior of an isolated eigenvalue. The lightly shaded regions
correspond to minima with an isolated eigenvalue that does not change their sta-
bility. The darkly shaded regions correspond to saddles with an isolated eigen-
value, and either have many other unstable directions or are naïve minima desta-
bilized by the isolated eigenvalue.

Of special interest in the mixed models are the marginal states with µ = µm.
Evidence suggests that long-time quench dynamics arrives at marginal states,
but we don’t know how to predict which ones. As noted, those at the thresh-
old energy were thought to be important, but recently have been shown to not
attract the dynamics in most models.
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There are significant geometric differences among the marginal states, but these
changes all revolve around the debunked threshold energy. This plot shows the
minimal-energy neighbors of marginal states with various E0 as a function of
overlap. For energies above the threshold, there are states at arbitrarily small
distance, and they have µ < µm. Below the threshold, a gap appears, and the
nearest states have µ > µm.


