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Introduction

What are critical phenomena?

Critical Opalescence 2019 (no audio), Chemistry Demo Lab Ohio State
University (2019)




Introduction

A canonical example: percolation

Percolation studies the connectivity of
randomly depleted networks.

1. Take a lattice.
2. Keep each bond with probability p.

3. Ask: are the two sides still connected?
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A canonical example: percolation

Percolation studies the connectivity of
randomly depleted networks. o7 = HU= L an o

1. Take a lattice.
2. Keep each bond with probability p.

3. Ask: are the two sides still connected?
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Introduction

A canonical example: percolation

Continuous transition from connected to
disconnected at the critical point p = p..

» For p < pc, clusters of bonds have a
typical maximum size.

» For p > pc, non-spanning clusters
have a typical maximum size.

» At the critical point, clusters have no
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typical maximum size.

» For p > pc, non-spanning clusters
have a typical maximum size.

» At the critical point, clusters have no
typical size.
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A canonical example: percolation

Typical sizes (or lack thereof) revealed by
coarsening:

1. Zoom out

2. Coarsen

3. Rescale
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A canonical example: percolation

Typical sizes (or lack thereof) revealed by
coarsening:

1. Zoom out
2. Coarsen
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Introduction

A canonical example: percolation

Typical sizes (or lack thereof) revealed by
coarsening:

1. Zoom out I

2. Coarsen

3. Rescale




Introduction

A canonical example: percolation
Length scale shrinks:

f—>§§

Difference Ap = p — p. grows:

Ap — 2V Ap

Invariant combination £ApY stays the same:

ENPY — (£/2)(2Y" Ap)” = AP
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A canonical example: percolation
Length scale shrinks:

f—>§§

Difference Ap = p — p. grows:

Ap — 2V Ap

Invariant combination £ApY stays the same:
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A canonical example: percolation
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Quasibrittle fracture

Introduction

A crack in the concrete of the Clark Hall stairwell. SEM image of stress-induced microcracks in concrete.
Jaron Kent-Dobias, unpublished (2019). Kamran M. Nemati, Scanning 19 6 426-430 (1997).




Quasibrittle fracture

The random fuse model

Fuse: a resistor with a failure threshold
Network of fuses with random thresholds

Disorder controlled by 5:
» Large 8 means small disorder
» Medium 8 means medium disorder

» Small 5 means high disorder
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The random fuse model

Fuse: a resistor with a failure threshold
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Network of fuses with random thresholds

Disorder controlled by 5:

» Large 5 means small disorder

» Medium 8 means medium disorder

» Small 5 means high disorder
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Quasibrittle fracture

High disorder and percolation

Infinite disorder resembles percolation.

Coarsening moves farther from p. and in
other directions:
Ap — 2V Ap B —2°8

Infinite size with finite disorder breaks at
infinitesimal current!

1
]
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Quasibrittle fracture

High disorder and percolation

Infinite disorder resembles percolation.

Coarsening moves farther from p. and in
other directions:
Ale/l/ BLa

Infinite size with finite disorder breaks at
infinitesimal current!

1
]
3




Quasibrittle fracture

Evidence of percolation crossover from finite-size scaling
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Quasibrittle fracture

Evidence of percolation crossover from finite-size scaling
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Quasibrittle fracture

Issues with crossover in dynamic quantities

e Crack width Damage in final burst

0.05r

Fuses broken in the final burst that severed the network 10 50 100



Quasibrittle fracture

Summary & conclusions

Structural properties of quasibrittle cracks
governed by crossover from percolation

Singular dynamic properties not easily
explained by same scaling

Outstanding theories:
» Novel behavior in transition line for
large 3
» Second fixed point at large 8 governs
singular dynamics




Essential singularities at abrupt transitions

Coarse graining magnetic models
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Coarse graining magnetic models
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Essential singularities at abrupt transitions
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Essential singularities at abrupt transitions
Coarse graining magnetic models
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Essential singularities at abrupt transitions

The metastable state and droplets

Metastability is common!

Super heated water can explode outside of microwave, New York Post,

Supercooled Water — Right Before Your Eyes, DrDIYhax, YouTube (2017) YouTube (2017)



Essential singularities at abrupt transitions

The metastable state and droplets
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The metastable state and droplets




Essential singularities at abrupt transitions
Droplets & decay rate

Surface energy cost o 27r X
Bulk energy gain oc mr? x AM |H|
At r. oc |[H|7, bulk gain beats surface cost

Cost AE. o< |H|™! diverges as H — 0




Essential singularities at abrupt transitions

Decay rate & imaginary free energy

e—l/x
0.6
Decay rate given by Arrhenius law o5k
[ o e—AE/T o g—B/IH|
0.4r
Decay relates to imaginary free energy '
ImF T.
0.3F
1 [ ImF(H 0.2}
ReF = = / Im F(H')
T )_oo H—H
0.1r




Essential singularities at abrupt transitions

Describing critical behavior
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Describing critical behavior
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Essential singularities at abrupt transitions

Describing critical behavior
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Essential singularities at abrupt transitions

Conclusions

Naive droplet model closely describes
critical singularity in 2D Ising model

Developing ways to incorporate this
singularity in iterative approximation

Works less well for 3D Ising—why?




Cluster algorithms for lattice models in fields

Simulating critical lattice models is slow

Timescales diverge at critical points
Realistic local methods are slow
Cluster methods are much faster

Don't naturally work with on-site
potentials like external fields
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Cluster algorithms for lattice

Cluster methods without potentials

With

ok =

_J1-ePRE AE; >0
Pi = {0 otherwise,
Pick a reflection
Pick a random site, add to cluster
Add neighbors with probability p;
Repeat for all sites added to cluster

Apply reflection to cluster

models in fields
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Cluster algorithms for lattice models in fields

Cluster methods without potentials

With

_J1-ePRE AE; >0
Pij = 0 otherwise,

Pick a reflection
Pick a random site, add to cluster
Add neighbors with probability p;

Repeat for all sites added to cluster

ok =

Apply reflection to cluster




Cluster algorithms for lattice models in fields

The ghost site representation

Introduce new site adjacent to all
others, give it funny coupling

Degree of freedom on site is a
symmetry group element, not a spin

Coniglio, de Liberto, Monroy, & Peruggi. J Phys A 22 (1989) L837



Cluster algorithms for lattice models in fields

Cluster methods with potentials

Repeat for all sites added to cluster
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With I
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P = {0 otherwise, |

1. Pick a reflection ‘ h

2. Pick a random site, add to cluster .

3. Add neighbors with probability p;; " J
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Apply reflection to cluster I "
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Cluster algorithms for lattice models in fields

Cluster methods with potentials

With

ok =

1= eBAEj AE; >0
P = {0 otherwise,
Pick a reflection
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Cluster algorithms for lattice models in fields

Cluster methods with potentials

With

ok =

U L.

_J1-eRE AE; >0 » -

P = {0 otherwise, | I
n

Pick a reflection u J s I
Pick a random site, add to cluster . u - .
Add neighbors with probability pj; I -
Repeat for all sites added to cluster - -
Apply reflection to cluster L 1



Cluster algorithms for lattice models in fields

Is it efficient?
Extension is fast: larger field means more efficient

Extension is natural: correlation times scale as predicted by coarsening
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Cluster algorithms with background potentials

Introduction




Cluster algorithms with background potentials

Hard spheres without potential

¢ o
eo_©
1. Pick a reflection . . . ‘
2. Pick a seed . . :. ‘
| @
3. Transform the seed ‘ . . . .
4. ldentify particles with intersections
2% Se o
5. Transform each intersecting particle ® ® ‘.. ® ®
6. Repeat 5-6 until exhausted .. .. ®
Dress & Krauth J Phys A: Math Gen 28 (1995) 597 .‘: () ® ¢
® ® o
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Cluster algorithms with background potentials

Hard spheres without potential

S A

Pick a reflection

Pick a seed

Transform the seed

Identify particles with intersections
Transform each intersecting particle

Repeat 5-6 until exhausted

Dress & Krauth J Phys A: Math Gen 28 (1995) 597

°
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Cluster algorithms with background potentials
Spheres in hard potential

Hard potential? Treat it like a particle!
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Pick a seed

Transform the seed

Identify ‘particles’ with intersections

Transform each intersecting particle
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Cluster algorithms with background potentials

Possible applications




Normal forms for infinite-order transitions

Introduction

How do you classify critical phenomena?
Normally, by principal singularity £ ~ Ap™”
—A/DxT

Variety of systems see £ ~ e

Does sharing o imply shared fixed point?

v vvyyy

vvvyyy

2D XY model
2D Coulomb gas
2D interfaces

Percolation in infinite-dimensional
growing networks

Percolation in infinite-dimensional
simplicial networks

1D inverse-square Ising model
Kondo model
2D sine—Gordon model

Hexatic—solid transition
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Normal forms for infinite-order transitions
The XY model and the BKT transition
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The XY model and the BKT transition
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The XY model and the BKT transition
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Normal forms for infinite-order transitions

Transitions in growing networks

Model of growing networks: every 5 < 6. P
timestep, add a vertex and o C
connect two existing vertices with ‘
probability 9. - | ' I

At § = ., infinite cluster emerges
with weight

S eB/\/B

Is it BKT?!



Normal forms for infinite-order transitions

How to compare fixed points

Look at differential equations for the coarse

e 0. Rescaling removes quadratic coefficients for
graining flow, compare coefficients

BKT: with x ~ AT and fugacity y,

Most fixed points: compare truncation dx )
dap 1 dt
d/ v — = —Xy + .-
dAqg 1 dt
- = i/Aq _|_ e .
dt v o= % in & ~ eA/2%7 depends only on

If v =1/ ~ 0.8774, probably the same! truncation!



Normal forms for infinite-order transitions
How to be BKT

Higher order rules for BKT:

> Neutrality: symmetry in y — —y. One can define X, y such that
» Triviality: at y = 0, nothing flows. dx N "
y y g —:—yz—boxy2+...
dr y 1Xy ﬂ _ _)?}7
dy d¢

ai = —xy + aoy> + a3x’y + -

Smooth coordinate transformation changes
cubic coefficients:

5 b2
% = x + Xpx% + Xoxy + Xzy? gme—w/m<1”120,@;<+...)
J=y+ Yoxy + Yay®

for universal by. Appears in corrections to
scaling:



Normal forms for infinite-order transitions

How to be BKT

With same quadratic form but no
neutrality constraint, cannot bring
equations to same simplest form:

dx

7:_“‘2_ =3 “ e
] y ay” +
a

d% = %7 — 0f?

Systems with BKT-like singularity but no
neutrality cannot be BKT!

Do growing networks share the same
subleading singularity? We don’t know yet.

Exploring use of analytic methods &
finite-size scaling.

Looking to other so-called BKT transitions
in, e.g., the Kondo problem, 1D
inverse-square Ising, simplicial percolation.



Hidden Order in URu,Si,

Introduction

L@
Ruo
Si @

Okazaki et al., Science 331 6016 439-442 (2011) Ghosh et al., Science Advances 6 10 eaaz4074



Hidden Order in URu5Si,

Phase diagram

Data from Hassinger et al. Physical Review B 77 115117 (2008)
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Hidden Order in URu,Si,

Resonant ultrasound spectroscopy

Amplitude (mV)
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Ghosh et al., Science Advances 6 10 eaaz4074




Hidden Order in URu,Si,

Strain components and moduli

Ghosh et al., Science Advances 6 10 eaaz4074
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Hidden Order in URu5Si,

Lessons from Landau

Vestnik Kavkaza, Great Baku native Lev Landau
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Hidden Order in URu5Si,

Lessons from Landau

Vestnik Kavkaza, Great Baku native Lev Landau

Any phase transition can
be described with an
order parameter that
comes from a single
representation of the
high-temperature
symmetry group.

—Lev Landau, probably



Hidden Order in URu,Si,

Mean-field phase diagrams
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Hidden Order in URu,Si,

Mean-field modulus

Elastic modulus for strain with symmetry of order B
parameter is 1g
s L _
C=0G\1+ —F——F+=
°< Coql + B|AT|)
for g, the modulation wavevector. .
Only one representation is consistent with this (C11—C12)

1or!
behavior! 2



Hidden Order in URu,Si,

Comparison with data
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Fig. 2: “Critical,” hard spheres colored by the argument of their hexatic order parameter.




