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Introduction
What are critical phenomena?

Critical Opalescence 2019 (no audio), Chemistry Demo Lab Ohio State
University (2019)



Introduction
A canonical example: percolation

Percolation studies the connectivity of
randomly depleted networks.

1. Take a lattice.

2. Keep each bond with probability p.

3. Ask: are the two sides still connected?
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Continuous transition from connected to
disconnected at the critical point p = pc .

I For p < pc , clusters of bonds have a
typical maximum size.

I For p > pc , non-spanning clusters
have a typical maximum size.

I At the critical point, clusters have no
typical size.
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Introduction
A canonical example: percolation

Length scale shrinks:

ξ → 1

2
ξ

Difference ∆p = p − pc grows:

∆p → 21/ν∆p

Invariant combination ξ∆pν stays the same:

ξ∆pν → (ξ/2)(21/ν∆p)ν = ξ∆pν

p < pc p = pc p > pc
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A canonical example: percolation

Length scale shrinks:

ξ → 1

2
ξ

Difference ∆p = p − pc grows:

∆p → 21/ν∆p

Invariant combination ξ∆pν stays the same:

ξ∆pν = C =⇒ ξ = C∆p−ν

p < pc p = pc p > pc



Introduction
A canonical example: percolation

pc
peff



Quasibrittle fracture
Introduction

A crack in the concrete of the Clark Hall stairwell.
Jaron Kent-Dobias, unpublished (2019).

SEM image of stress-induced microcracks in concrete.
Kamran M. Nemati, Scanning 19 6 426–430 (1997).



Quasibrittle fracture
The random fuse model

Fuse: a resistor with a failure threshold

Network of fuses with random thresholds

Disorder controlled by β:

I Large β means small disorder

I Medium β means medium disorder

I Small β means high disorder
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Quasibrittle fracture
High disorder and percolation

Infinite disorder resembles percolation.

Coarsening moves farther from pc and in
other directions:

∆p → 21/ν∆p β → 2αβ

Infinite size with finite disorder breaks at
infinitesimal current!

L→ 1

2
L
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Quasibrittle fracture
High disorder and percolation

Infinite disorder resembles percolation.

Coarsening moves farther from pc and in
other directions:

∆pL1/ν βLα

Infinite size with finite disorder breaks at
infinitesimal current!

L→ 1

2
L



Quasibrittle fracture
Evidence of percolation crossover from finite-size scaling
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Quasibrittle fracture
Issues with crossover in dynamic quantities

Fuses broken in the final burst that severed the network

Crack width Damage in final burst
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L

0.05

0.10

0.20

0.50

βmax



Quasibrittle fracture
Summary & conclusions

Structural properties of quasibrittle cracks
governed by crossover from percolation

Singular dynamic properties not easily
explained by same scaling

Outstanding theories:

I Novel behavior in transition line for
large β

I Second fixed point at large β governs
singular dynamics
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Essential singularities at abrupt transitions
The metastable state and droplets

Metastability is common!

Supercooled Water – Right Before Your Eyes, DrDIYhax, YouTube (2017)
Super heated water can explode outside of microwave, New York Post,
YouTube (2017)
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Essential singularities at abrupt transitions
Droplets & decay rate

Surface energy cost ∝ 2πr × Σ

Bulk energy gain ∝ πr2 ×∆M |H|

At rc ∝ |H|−1, bulk gain beats surface cost

Cost ∆Ec ∝ |H|−1 diverges as H → 0



Essential singularities at abrupt transitions
Decay rate & imaginary free energy

Decay rate given by Arrhenius law
Γ ∝ e−∆Ec/T ∼ e−B/|H|

Decay relates to imaginary free energy
ImF ∝ Γ.

ReF =
1

π

∫ ∞

−∞

ImF (H ′)
H − H ′

dH ′
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Essential singularities at abrupt transitions
Describing critical behavior

Tc
T



Essential singularities at abrupt transitions
Describing critical behavior

Tc
T



Essential singularities at abrupt transitions
Describing critical behavior
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Essential singularities at abrupt transitions
Conclusions

Näıve droplet model closely describes
critical singularity in 2D Ising model

Developing ways to incorporate this
singularity in iterative approximation

Works less well for 3D Ising—why?



Cluster algorithms for lattice models in fields
Simulating critical lattice models is slow

Timescales diverge at critical points

Realistic local methods are slow

Cluster methods are much faster

Don’t naturally work with on-site
potentials like external fields



Cluster algorithms for lattice models in fields
Simulating critical lattice models is slow

Timescales diverge at critical points

Realistic local methods are slow

Cluster methods are much faster

Don’t naturally work with on-site
potentials like external fields



Cluster algorithms for lattice models in fields
Simulating critical lattice models is slow

Timescales diverge at critical points

Realistic local methods are slow

Cluster methods are much faster

Don’t naturally work with on-site
potentials like external fields



Cluster algorithms for lattice models in fields
Simulating critical lattice models is slow

Timescales diverge at critical points

Realistic local methods are slow

Cluster methods are much faster

Don’t naturally work with on-site
potentials like external fields



Cluster algorithms for lattice models in fields
Simulating critical lattice models is slow

Timescales diverge at critical points

Realistic local methods are slow

Cluster methods are much faster

Don’t naturally work with on-site
potentials like external fields



Cluster algorithms for lattice models in fields
Simulating critical lattice models is slow

Timescales diverge at critical points

Realistic local methods are slow

Cluster methods are much faster

Don’t naturally work with on-site
potentials like external fields



Cluster algorithms for lattice models in fields
Simulating critical lattice models is slow

Timescales diverge at critical points

Realistic local methods are slow

Cluster methods are much faster

Don’t naturally work with on-site
potentials like external fields



Cluster algorithms for lattice models in fields
Cluster methods without potentials

With

pij =

{
1− eβ∆Eij ∆Eij > 0

0 otherwise,

1. Pick a reflection

2. Pick a random site, add to cluster

3. Add neighbors with probability pij

4. Repeat for all sites added to cluster

5. Apply reflection to cluster
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Cluster algorithms for lattice models in fields
The ghost site representation

Coniglio, de Liberto, Monroy, & Peruggi. J Phys A 22 (1989) L837

Introduce new site adjacent to all
others, give it funny coupling

Degree of freedom on site is a
symmetry group element, not a spin



Cluster algorithms for lattice models in fields
Cluster methods with potentials

With

pij =

{
1− eβ∆Eij ∆Eij > 0

0 otherwise,

1. Pick a reflection

2. Pick a random site, add to cluster

3. Add neighbors with probability pij

4. Repeat for all sites added to cluster

5. Apply reflection to cluster



Cluster algorithms for lattice models in fields
Cluster methods with potentials

With

pij =

{
1− eβ∆Eij ∆Eij > 0

0 otherwise,

1. Pick a reflection

2. Pick a random site, add to cluster

3. Add neighbors with probability pij

4. Repeat for all sites added to cluster

5. Apply reflection to cluster



Cluster algorithms for lattice models in fields
Cluster methods with potentials

With

pij =

{
1− eβ∆Eij ∆Eij > 0

0 otherwise,

1. Pick a reflection

2. Pick a random site, add to cluster

3. Add neighbors with probability pij

4. Repeat for all sites added to cluster

5. Apply reflection to cluster



Cluster algorithms for lattice models in fields
Cluster methods with potentials

With

pij =

{
1− eβ∆Eij ∆Eij > 0

0 otherwise,

1. Pick a reflection

2. Pick a random site, add to cluster

3. Add neighbors with probability pij

4. Repeat for all sites added to cluster

5. Apply reflection to cluster

?



Cluster algorithms for lattice models in fields
Cluster methods with potentials

With

pij =

{
1− eβ∆Eij ∆Eij > 0

0 otherwise,

1. Pick a reflection

2. Pick a random site, add to cluster

3. Add neighbors with probability pij

4. Repeat for all sites added to cluster

5. Apply reflection to cluster

?



Cluster algorithms for lattice models in fields
Cluster methods with potentials

With

pij =

{
1− eβ∆Eij ∆Eij > 0

0 otherwise,

1. Pick a reflection

2. Pick a random site, add to cluster

3. Add neighbors with probability pij

4. Repeat for all sites added to cluster

5. Apply reflection to cluster

?



Cluster algorithms for lattice models in fields
Cluster methods with potentials

With

pij =

{
1− eβ∆Eij ∆Eij > 0

0 otherwise,

1. Pick a reflection

2. Pick a random site, add to cluster

3. Add neighbors with probability pij

4. Repeat for all sites added to cluster

5. Apply reflection to cluster

?



Cluster algorithms for lattice models in fields
Cluster methods with potentials

With

pij =

{
1− eβ∆Eij ∆Eij > 0

0 otherwise,

1. Pick a reflection

2. Pick a random site, add to cluster

3. Add neighbors with probability pij

4. Repeat for all sites added to cluster

5. Apply reflection to cluster

?



Cluster algorithms for lattice models in fields
Cluster methods with potentials

With

pij =

{
1− eβ∆Eij ∆Eij > 0

0 otherwise,

1. Pick a reflection

2. Pick a random site, add to cluster

3. Add neighbors with probability pij

4. Repeat for all sites added to cluster

5. Apply reflection to cluster



Cluster algorithms for lattice models in fields
Cluster methods with potentials

With

pij =

{
1− eβ∆Eij ∆Eij > 0

0 otherwise,

1. Pick a reflection

2. Pick a random site, add to cluster

3. Add neighbors with probability pij

4. Repeat for all sites added to cluster

5. Apply reflection to cluster



Cluster algorithms for lattice models in fields
Cluster methods with potentials

With

pij =

{
1− eβ∆Eij ∆Eij > 0

0 otherwise,

1. Pick a reflection

2. Pick a random site, add to cluster

3. Add neighbors with probability pij

4. Repeat for all sites added to cluster

5. Apply reflection to cluster



Cluster algorithms for lattice models in fields
Cluster methods with potentials

With

pij =

{
1− eβ∆Eij ∆Eij > 0

0 otherwise,

1. Pick a reflection

2. Pick a random site, add to cluster

3. Add neighbors with probability pij

4. Repeat for all sites added to cluster

5. Apply reflection to cluster



Cluster algorithms for lattice models in fields
Is it efficient?

Extension is fast: larger field means more efficient

Extension is natural: correlation times scale as predicted by coarsening
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Cluster algorithms with background potentials
Introduction



Cluster algorithms with background potentials
Hard spheres without potential

1. Pick a reflection

2. Pick a seed

3. Transform the seed

4. Identify particles with intersections

5. Transform each intersecting particle

6. Repeat 5–6 until exhausted

Dress & Krauth J Phys A: Math Gen 28 (1995) 597
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Cluster algorithms with background potentials
Possible applications



Normal forms for infinite-order transitions
Introduction

How do you classify critical phenomena?

Normally, by principal singularity ξ ∼ ∆p−ν

Variety of systems see ξ ∼ e−A/∆xσ

Does sharing σ imply shared fixed point?

I 2D XY model

I 2D Coulomb gas

I 2D interfaces
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Berezinskĭi–Kosterlitz–Thouless fixed point

For ∆x ∼ ∆T ,

ξ ∝ e−A/
√

∆x



Normal forms for infinite-order transitions
The XY model and the BKT transition

Low-temperature phase is pseudo-long
range, vortices are bound

High-temperature phase has unbounded
vortices

Unbinding transition governed by
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Normal forms for infinite-order transitions
Transitions in growing networks

Model of growing networks: every
timestep, add a vertex and
connect two existing vertices with
probability δ.

At δ = δc , infinite cluster emerges
with weight

S ∝ eB/
√

∆δ

Is it BKT?!

δ < δc δ > δc



Normal forms for infinite-order transitions
How to compare fixed points

Look at differential equations for the coarse
graining flow, compare coefficients

Most fixed points: compare truncation

d∆p

d`
=

1

ν
∆p + · · ·

d∆q

d`
=

1

ν ′
∆q + · · ·

If ν = ν ′ ' 0.8774, probably the same!

Rescaling removes quadratic coefficients for
BKT: with x ∼ ∆T and fugacity y ,

dx

d`
= −y2 + · · ·

dy

d`
= −xy + · · ·

σ = 1
2 in ξ ∼ eA/∆xσ depends only on

truncation!



Normal forms for infinite-order transitions
How to be BKT

Higher order rules for BKT:

I Neutrality: symmetry in y → −y .

I Triviality: at y = 0, nothing flows.
dx

d`
= −y2 + a1xy

2 + · · ·
dy

d`
= −xy + a2y

3 + a3x
2y + · · ·

Smooth coordinate transformation changes
cubic coefficients:

x̃ = x + X1x
2 + X2xy + X3y

2

ỹ = y + Y2xy + Y3y
2

One can define x̃ , ỹ such that

dx̃

d`
= −ỹ2 − b0x̃ ỹ

2 + · · ·
dỹ

d`
= −x̃ ỹ

for universal b0. Appears in corrections to
scaling:

ξ ∝ e−π/
√

∆x̃

(
1− πb2

0

12

√
∆x̃ + · · ·

)



Normal forms for infinite-order transitions
How to be BKT

With same quadratic form but no
neutrality constraint, cannot bring
equations to same simplest form:

dx̃

d`
= −ỹ2 − c1ỹ

3 + · · ·
dỹ

d`
= −x̃ ỹ − c2ỹ

3

Systems with BKT-like singularity but no
neutrality cannot be BKT!

Do growing networks share the same
subleading singularity? We don’t know yet.

Exploring use of analytic methods &
finite-size scaling.

Looking to other so-called BKT transitions
in, e.g., the Kondo problem, 1D
inverse-square Ising, simplicial percolation.



Hidden Order in URu2Si2
Introduction

Okazaki et al., Science 331 6016 439–442 (2011) Ghosh et al., Science Advances 6 10 eaaz4074



Hidden Order in URu2Si2
Phase diagram

Data from Hassinger et al. Physical Review B 77 115117 (2008)
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Hidden Order in URu2Si2
Resonant ultrasound spectroscopy

Ghosh et al., Science Advances 6 10 eaaz4074



Hidden Order in URu2Si2
Strain components and moduli

Ghosh et al., Science Advances 6 10 eaaz4074
Data from Ghosh et al., Science Advances 6 10 eaaz4074
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Hidden Order in URu2Si2
Mean-field phase diagrams
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Hidden Order in URu2Si2
Mean-field modulus

Elastic modulus for strain with symmetry of order
parameter is

C = C0

(
1 +

A

C0

1

q4∗ + B|∆T |

)−1

for q∗ the modulation wavevector.

Only one representation is consistent with this
behavior!



Hidden Order in URu2Si2
Comparison with data
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