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Arrangement of nearby minima and saddles
in the mixed spherical energy landscapes
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Abstract

The mixed spherical models were recently found to violate long-held assumptions about
mean-field glassy dynamics. In particular, the threshold energy, where most stationary
points are marginal and that in the simpler pure models attracts long-time dynamics,
seems to lose significance. Here, we compute the typical distribution of stationary points
relative to each other in mixed models with a replica symmetric complexity. We examine
the stability of nearby points, accounting for the presence of an isolated eigenvalue in
their spectrum due to their proximity. Despite finding rich structure not present in the
pure models, we find nothing that distinguishes the points that do attract the dynamics.
Instead, we find new geometric significance of the old threshold energy, and invalidate
pictures of the arrangement of most marginal inherent states into a continuous mani-
fold.
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1 Introduction

Many systems exhibit “glassiness,” characterized by rapid slowing of dynamics over a short
parameter interval. These include actual (structural) glasses, spin glasses, certain inference
and optimization problems, and more [1–4]. Glassiness is qualitatively understood to arise
from structure of an energy or cost landscape, whether due to the proliferation of metastable
states, or to the raising of barriers which cause effective dynamic constraints [5–7]. How-
ever, in most models there is no known quantitative correspondence between these landscape
properties and the dynamic behavior they are purported to describe.

There is such a correspondence in one of the simplest mean-field model of glasses: in
the pure spherical models, the dynamic transition corresponds with the energy level at which
thermodynamic states attached to marginal inherent states1 dominate the free energy [8]. At
that level, called the threshold energy Eth, slices of the landscape at fixed energy undergo a
percolation transition. In fact, this threshold energy is significant in other ways: it attracts the
long-time dynamics after quenches in temperature to below the dynamical transition from any
starting temperature [9,10]. All of this can be understood in terms of the landscape structure,
and namely in the statistics of stationary points of the energy.

In slightly less simple models, the mixed spherical models, the story changes. In these mod-
els there are a range of energies with exponentially many marginal minima. It was believed
that the energy level at which these marginal minima are the most common type of stationary
point would play the same role as the threshold energy in the pure models (in fact we will
refer to this energy level as the threshold energy in the mixed models). However, recent work
has shown that this is incorrect. Quenches from different starting temperatures above the dy-
namical transition temperature result in dynamics that approach marginal minima at different
energy levels, and the purported threshold does not attract the long-time dynamics in most
cases [11,12].

This paper studies the two-point structure of stationary points in the mixed spherical mod-
els, or their arrangement relative to each other, previously studied only for the pure mod-
els [13]. This gives various kinds of information. When one point is a minimum, we see what
other kinds of minima are nearby, and the height of the saddle points that separate them.
When both points are saddles, we see the arrangement of barriers relative to each other.

More specifically, one reference point is fixed with certain properties. Then, we compute
the logarithm of the number of other points constrained to lie at a fixed overlap from the
reference point. Constraining the count to points of a fixed overlap from the reference point
produces constrained points with atypical properties. For instance, when the required overlap
is made sufficiently large, typical constrained points tend to have an isolated eigenvalue pulled
out of their spectrum, and its associated eigenvector is correlated with the direction of the
reference point. Without the proximity constraint, such an isolated eigenvalue amounts to a
large deviation from the spectrum of typical stationary points.

1For this paper, which focuses on minima, we will take state to mean minimum or equivalently inherent state
and not a thermodynamic state. Any discussion of thermodynamic or equilibrium states will explicitly specify this.
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In order to address the open problem of what energies attract the long-time dynamics, we
focus on the neighborhoods of the marginal minima, to see if there is anything interesting to
differentiate sets of them from each other. Though we find rich structure in this population,
their properties pivot around the debunked threshold energy, and the apparent attractors of
long-time dynamics are not distinguished. Moreover, we show that the usual picture of a
marginal ‘manifold’ of inherent states separated by subextensive barriers [14] is only true at the
threshold energy, while at other energies typical marginal minima are far apart and separated
by extensive barriers. Therefore, with respect to the problem of dynamics this paper merely
deepens the outstanding issues.

In §2 we define the mixed spherical models and outline some of their important properties.
In the following section §3, we go over the main results of this work and their interpretation.
In §4 we outline the calculation of the two-point complexity and its expansion in the near-
neighborhood of a reference point. Details of the calculation of the complexity are in Appendix
A. In §5 we introduce a method for calculating the value of an isolated eigenvalue in the
spectrum at stationary points, and outline the calculation for the mixed spherical models.
Details of this calculation are in Appendix B. Finally, we draw some conclusions about our
results in §6. For the interested reader, a comparison between the two-point complexity and
the Franz–Parisi potential in the mixed spherical models is presented in Appendix C.

2 The model

The mixed spherical models are defined by the Hamiltonian

H(s) = −
∑

p

1
p!

N
∑

i1···ip

J (p)i1···ip
si1 · · · sip , (1)

where the vectors s ∈ RN are confined to the sphere ∥s∥2 = N [15–17]. The coupling coeffi-
cients J are fully-connected and random, with zero mean and variance (J (p))2 = app!/2N p−1

scaled so that the energy is typically extensive. The overbar denotes an average over the coef-
ficients J . The factors ap in the variances are freely chosen constants that define the particular
model. For instance, the ‘pure’ p-spin model has ap′ = δp′p. This class of models encompasses
all statistically isotropic Gaussian random Hamiltonians defined on the hypersphere.

The covariance between the energy at two different points is a function of the overlap, or
dot product, between those points, or

H(s1)H(s2) = N f
�s1 · s2

N

�

, (2)

where the function f is defined from the coefficients ap by

f (q) =
1
2

∑

p

apqp . (3)

The choice of f has significant effect on the form of equilibrium order in the model, and
likewise influences the geometry of stationary points [17,18].

To enforce the spherical constraint at stationary points, we make use of a Lagrange multi-
plier ω. This results in the extremal problem

H(s) +
ω

2
(∥s∥2 − N) . (4)
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Figure 1: Illustration of the interpretation of the stability µ, which sets the location
of the center of the eigenvalue spectrum. In the top row we have spectra without
an isolated eigenvalue. (a) µ < µm, there are an extensive number of downward
directions, and the associated point is an extensive saddle. (b) µ = µm and we have
a marginal minimum with asymptotically flat directions. (c) µ > µm, all eigenvalues
are positive, and the point is a stable minimum. On the bottom we show what hap-
pens in the presence of an isolated eigenvalue. (d) One eigenvalue leaves the bulk
spectrum of a saddle point and it remains a saddle point, but now with an eigenvec-
tor correlated with the orientation of the reference vector, so we call this an oriented
saddle. (e) The same happens for a minimum, and we can call it an oriented mini-
mum. (f) One eigenvalue outside a positive bulk spectrum is negative, destabilizing
what would otherwise have been a stable minimum, producing an oriented index-one
saddle.

The gradient and Hessian at a stationary point are then

∇H(s,ω) = ∂ H(s) +ωs , Hess H(s,ω) = ∂ ∂ H(s) +ωI , (5)

where ∂ = ∂
∂ s denotes the derivative with respect to s.

When we count stationary points, we classify them by certain properties. One of these
is the energy density E = H/N . We will also fix the stability µ = 1

N TrHess H, also known
as the radial reaction. In the mixed spherical models, all stationary points have a semicircle
law for the eigenvalue spectrum of their Hessians, each with the same width µm, but whose
center is shifted by different amounts. Fixing the stability µ fixes this shift, and therefore fixes
the spectrum of the associated stationary point. When the stability is smaller than the width
of the spectrum, or µ < µm, there are an extensive number of negative eigenvalues, and the
stationary point is a saddle with a large index whose value is set by the stability. When the
stability is greater than the width of the spectrum, or µ > µm, the semicircle distribution lies
only over positive eigenvalues, and unless an isolated eigenvalue leaves the semicircle and
becomes negative, the stationary point is a minimum. Finally, when µ = µm, the edge of the
semicircle touches zero and we have marginal minima. Fig. 1 shows what different values of
the stability imply about the spectrum at stationary points.

In the pure spherical models, E and µ cannot be fixed separately: fixing one uniquely fixes
the other. This property leads to the great simplification of these models: marginal minima
exist only at one energy level, and therefore only that energy has the possibility of trapping
the long-time dynamics. In generic mixed models this is not the case and at a given energy

4

https://scipost.org
https://scipost.org/SciPostPhys.16.1.001


SciPost Phys. 16, 001 (2024)

-1.75 -1.70 -1.65 -1.60

5.7

5.8

5.9

6.0

6.1

6.2

E0

μ0

μm

EthEgs

m
in

im
a

sa
d

d
le

s

Figure 2: Plot of the complexity (logarithm of the number of stationary points) for
the 3 + 4 mixed spherical model studied in this paper. Energies and stabilities of
interest are marked, including the ground state energy Egs, the marginal stability
µm, and the threshold energy Eth. The blue line shows the location of the most
common type of stationary point at each energy level. The highlighted red region
shows the approximate range of minima that attract aging dynamics from a quench
to zero temperature found in [11].

level E there are many stabilities for which exponentially many marginal points are found. We
define the threshold energy Eth as the energy at which most stationary points are marginal.2

In this study, our numeric examples are drawn exclusively from the model studied in [11],
whose covariance function is given by

f3+4(q) =
1
2

�

q3 + q4
�

. (6)

First, the ordering of its stationary points is like that of the pure spherical models, without any
clustering [19]. Second, properties of its long-time dynamics have been extensively studied
and are available for comparison. Though the numeric examples all come from the 3+4 model,
the results apply to any model sharing its simple order. The annealed one-point complexity of
these models was calculated in [20], and for this model the annealed calculation is expected
to be correct.

The one-point complexity of the 3+ 4 model as a function of energy E0 and stability µ0 is
plotted in Fig. 2. The same plot for a pure p-spin model would consist of only a line, because
E0 and µ0 cannot be varied independently. Several important features of the complexity are
highlighted: the energies of the ground state Egs and the threshold Eth, along with the line of
marginal stability µm. Along the line of marginal stability, energies that attract aging dynamics
from different temperatures are highlighted in red. One might expect some feature to mark
the ends of this range, something that would differentiate marginal minima that support aging
dynamics from those that do not. As indicated in the introduction, the two-point complexity
we study in this paper does not produce such a result.

2Note that crucially this is not the energy that has the most marginal stationary points: this energy level with
the largest number of marginal points has even more saddles of extensive index. So Eth contains a minority of the
marginal points, even if those marginal points are the majority of stationary points with energy Eth.
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Figure 3: The neighborhood of a reference minimum with E0 = −1.71865< Eth and
µ0 = 6.1> µm. Left: The most common type of stationary point lying at fixed overlap
q and energy E1 from the reference minimum. The black line gives the smallest or
largest energies where neighbors can be found at a given overlap. Right: The most
common type of stationary point lying at fixed overlap q and stability µ1 from the
reference minimum. Note that this describes a different set of stationary points than
shown in the left plot. On both plots, the shading of the righthand part depicts the
state of an isolated eigenvalue in the spectrum of the Hessian of the neighboring
points. Those more lightly shaded are points with an isolated eigenvalue that does
not change their stability, e.g., corresponding with Fig. 1(d-e). The more darkly
shaded are oriented index-one saddles, e.g., corresponding with Fig. 1(f). The dot-
dashed line on the left plot depicts the trajectory of the solid line on the right plot,
and the dot-dashed line on the right plot depicts the trajectory of the solid line on the
left plot. In this case, the points lying nearest to the reference minimum are saddles
with µ < µm, but with energies smaller than the threshold energy, which makes them
an atypical population of saddles.

3 Results

Our results stem from the two-point complexity Σ12, which is defined as the logarithm of the
number of stationary points with energy E1 and stability µ1 that lie at an overlap q with a
typical reference stationary point whose energy is E0 and stability is µ0. When the complexity
is positive, there are exponentially many stationary points with the given properties condi-
tioned on the existence of the reference point. When it is zero, there are only order-one such
points, and when it is negative there are exponentially few (effectively, none). In the examples
below, the boundary of zero complexity between exponentially many and few points is often
highlighted, with parameter regions that have negative complexity having no color. Finally,
as a result of the condition that the counted points lie with a given proximity to the reference
point, their spectrum can be modified by the presence of an isolated eigenvalue, which can
change their stability as shown in Fig. 1.

3.1 Barriers around deep states

If the reference configuration is a stable minimum, then there is a gap in the overlap between
it and its nearest neighbors in configuration space. We can characterize these neighbors as a
function of their overlap and stability, with one example seen in Fig. 3. For stable minima, the
qualitative results for the pure p-spin model continue to hold, with some small modifications
[13].
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The largest difference between the pure and mixed models is the decoupling of nearby
stable points from nearby low-energy points: in the pure p-spin model, the left and right
panels of Fig. 3 would be identical up to a constant factor −p. Instead, for mixed models they
differ substantially, as evidenced by the dot-dashed lines in both plots that in the pure models
would correspond exactly with the solid lines. One significant consequence of this difference
is the diminished significance of the threshold energy Eth: in the left panel, marginal minima
of the threshold energy are the most common among unconstrained points with q = 0, but
marginal minima of lower energy are more common in the vicinity of the example reference
minimum. In the pure models, all marginal minima are at the threshold energy.

The nearest neighbor points are always oriented saddles, sometimes saddles with an ex-
tensive index and sometimes index-one saddles (Fig. 1(d, f)). This is a result of the persistent
presence of a negative isolated eigenvalue in the spectrum of the nearest neighbors, e.g., as in
the shaded regions of Fig. 3. Like in the pure models, the minimum energy and maximum sta-
bility of nearby points are not monotonic in q: there is a range of overlap where the minimum
energy of neighbors decreases with overlap. The transition from stable minima to index-one
saddles along the line of lowest-energy states occurs at its local minimum, another similarity
with the pure models [13]. This point is interesting because it describes the properties of the
nearest stable minima to the reference point. It is not clear why the local minimum of the
boundary coincides with this point or what implications that has for behavior.

3.2 Grouping of saddle points

At stabilities lower than the marginal stability one finds saddles with an extensive index.
Though, being unstable, saddles are not attractors of dynamics, their properties do influ-
ence out-of-equilibrium dynamics. For example, high-index saddle points are stationed at
the boundaries between different basins of attraction of gradient flow, and for a given basin
the flow between adjacent saddle points defines a complex with implications for the landscape
topology [21].

Other stationary points are found at arbitrarily small distances from a reference extensive
saddle point, with a linear pseudogap in their complexity. The energy and stability of these
near neighbors approach that of the reference point as the difference in overlap∆q is brought
to zero. However, the approach of the energy and stability are at different rates: the energy
difference between the reference and its neighbors shrinks like ∆q2, while the stability differ-
ence shrinks like ∆q. This means that the near neighborhood of saddle points is dominated
by the presence of other saddle points at very similar energy, but relatively variable index.
Descending between saddles must simultaneously lower the index and the energy, but if the
energy and stability change with the same order of magnitude, the connected saddle points
must lie at a macroscopic distance from each other. This makes it impossible to use the prop-
erties of nearest neighbors to draw inferences about the way saddle points are connected by
gradient flow.

3.3 Geometry of marginal states

The set of marginal states is of special interest. First, marginal states are known to attract
physical and algorithmic dynamics [22]. Second, they have more structure than in the pure
models, with different types of marginal states being found at different energies. We find, sur-
prisingly, that the properties of marginal states pivot around the threshold energy, the energy
at which most stationary points are marginal, but which is not significant for aging dynamics.
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Figure 4: The neighborhood of marginal states at several energies below the thresh-
old energy. Left: The range of energies E1 at which nearby states are found. For any
E0 < Eth, the nearest class of states is at an extensive distance, and their energies are
higher than that of the reference configuration. Center: The range of stabilities µ1
at which nearby states are found. For E0 near the threshold, the nearest states are al-
ways index-one saddles with µ > µm, but as the overlap gap widens their population
becomes model-dependent. Right: The range of energies at which other marginal
states are found. Here, the more darkly shaded regions denote where an isolated
eigenvalue appears. Marginal states below the threshold are always separated by a
gap in their overlap.

• Energies below the threshold. These marginal states have a macroscopic gap in their
overlap with nearby minima and saddles. Their nearest-neighbor stationary points are
saddles with an oriented direction, and their nearest neighbors always have a higher
energy density than the reference state. Fig. 4 shows examples of the neighborhoods of
these marginal minima.

• Energies above the threshold. These marginal states have neighboring stationary
points at arbitrarily close distance, with a quadratic pseudogap in their complexity. Their
nearest neighbors are strictly saddle points with an extensive number of downward direc-
tions and their nearest neighbors always have a higher energy density than the reference
state. The nearest neighboring marginal states have an overlap gap with the reference
state. Fig. 5 shows examples of the neighborhoods of these marginal minima.

• At the threshold energy. These marginal states have neighboring stationary points at
arbitrarily close distance, with a cubic pseudogap in their complexity. The nearest ones
include oriented saddle points with an extensive number of downward directions, and
oriented stable and marginal minima. Though most of the nearest states are found at
higher energies, they can also be found at the same energy density as the reference state.
Fig. 6 shows examples of the neighborhoods of these marginal states.

This leads us to some general conclusions. First, at all energy densities except at the thresh-
old energy, typical marginal minima are separated by extensive energy barriers. Therefore, the
picture of a marginal manifold of many (even all) marginal states lying arbitrarily close and
being connected by subextensive energy barriers can only describe the collection of marginal
minima at the threshold energy, which is an atypical population of marginal minima. At en-
ergies both below and above the threshold energy, typical marginal minima are isolated from
each other.3

3We must put a small caveat here: for any combination of energy and stability of the reference point, this
calculation admits order-one other marginal minima to lie a subextensive distance from the reference point. For
such a population of points, Σ12 = 0 and q = 1, which is always a permitted solution when at least one marginal
direction exists. These points are separated by small barriers from one another, but they also cover a vanishing
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old energy. Left: The range of energies E1 at which nearby states are found. For any
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have strictly greater energy than the reference state. Center: The range of stabili-
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Here, the more darkly shaded regions denote where an isolated eigenvalue appears.
Marginal states above the threshold are always separated by a gap in their overlap.
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the given overlap q. Left: The range of energies E1 at which nearby points are
found. The approach of both the minimum and maximum energies goes like (1−q)3.
Center: The range of stabilities µ1 at which nearby points are found. The approach
of both limits goes like (1− q)2. Right: The range of nearby marginal minima. The
more darkly shaded region denotes where an isolated eigenvalue appears. Marginal
minima at the threshold lie asymptotically close together.

This has implications for how quench dynamics should be interpreted. When typical
marginal states are approached above the threshold energy, they must have been via the neigh-
borhood of saddles with an extensive index, not other marginal states. On the other hand,
typical marginal states approached below the threshold energy must be reached after an ex-
tensive distance in configuration space without encountering any stationary point. The geo-
metric conditions of the neighborhoods above and below are quite different, but the observed
aging dynamics don’t appear to qualitatively change [11,12]. Therefore, if the marginal min-
ima attracting dynamics are typical ones, the conditions in the neighborhood of the marginal
minimum eventually reached at infinite time appear to be irrelevant for the nature of aging
dynamics at any finite time.

piece of configuration space, and each such cluster of points is isolated by extensive barriers from each other
cluster in the way described above. To move on a ‘manifold’ of nearby marginal minima within such a cluster
cannot describe aging, since the overlap with the initial condition will never change from one.
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A version of this story was told a long time ago by the authors of [14], who write on aging
in the pure spherical models where the limit of N →∞ is taken before that of t →∞: “it is
important to remark that this [...] does not mean that the system relaxes into a near-threshold
state: at all finite times an infinite system has a Hessian with an infinite number of directions
in which the energy is a maximum. [...] We have seen that the saddles separating threshold
minima are typically O(N1/3) above the threshold level, while the energy is at all finite times
O(N) above this level.” In the present case of the mixed spherical models, where [11] has
shown aging dynamics asymptotically approaching marginal states that we have shown have
O(N) saddles separating them, this lesson must be taken all the more seriously.

On the other hand, it is possible that atypical marginal minima are relevant for attracting
the dynamics. Studying these points would require a different kind of computation, where
the fixed reference point is abandoned and both points are treated on equal footing. Such a
calculation is beyond the scope of this paper, but is clear fodder for future research.

4 Calculation of the two-point complexity

To calculate the two-point complexity, we extend a common method for counting stationary
points: the Kac–Rice method [23, 24]. The basic idea is that stationary points of a function
can be counted by integrating a Dirac δ-function containing the function’s gradient over its
domain. Because the argument of the δ-function is nonlinear in the integration variable, it
must be weighted by the determinant of its Jacobian, which happens to be the Hessian of the
function. It is not common that this procedure can be analytically carried out for an explicit
function. However, in the spherical models it can be carried out on average.

In order to lighten notation, we introduce the Kac–Rice measure

dνH(s,ω) = 2 ds dωδ(∥s∥2 − N)δ
�

∇H(s,ω)
� �

�detHess H(s,ω)
�

� , (7)

containing the δ-function of the gradient and determinant of the Hessian of the Hamiltonian,
along with a δ-function enforcing the spherical constraint. If integrated over configuration
space, NH =
∫

dνH(s,ω) gives the total number of stationary points in the function. The Kac–
Rice method has been used by in many studies to analyze the geometry of random functions
[25–28]. More interesting is the measure conditioned on the energy density E and stability µ
of the points,

dνH(s,ω | E,µ) = dνH(s,ω)δ
�

N E −H(s)
�

δ
�

Nµ− TrHess H(s,ω)
�

. (8)

While µ is strictly the trace of the Hessian, we call it the stability because in this family of
models all stationary points have a bulk spectrum of the same shape, shifted by different
constants. The stability µ sets this shift, and therefore determines the stiffness of minima and
the typical index of saddle points. See Fig. 1 for examples.

We want the typical number of stationary points with energy density E1 and stability µ1
that lie a fixed overlap q from a reference stationary point of energy density E0 and stability
µ0. For a typical number, we cannot average the total number NH , which is exponentially
large in N and therefore can be biased by atypical examples. Therefore, we will average the
logarithm of this number. The two-point complexity is therefore defined by

Σ12 =
1
N

∫

dνH(σσσ,ς | E0,µ0)
∫

dνH(σσσ′,ς′ | E0,µ0)
log
�

∫

dνH(s,ω | E1,µ1)δ(Nq−σσσ · s)
�

. (9)

Inside the logarithm, the measure (8) is integrated with the further condition that s has a
certain overlap with the reference configuration σσσ. The entire expression is then integrated
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over σσσ again by the Kac–Rice measure, then divided by a normalization. This is equivalent to
summing the logarithm over all stationary points σσσ with the given properties, then dividing
by their total number, i.e., an average.

It is difficult to take the disorder average of anything that is not an exponential integral.
The normalization integral over σσσ′ in the denominator and the integral inside the logarithm
both pose a problem. Each can be treated using the replica trick: limm→0 xm−1 = 1

x and
limn→0

∂
∂ n xn = log x . Applying these transformations, we have

Σ12 =
1
N

lim
n→0

lim
m→0

∂

∂ n

∫

� m
∏

b=1

dνH(σσσb,ςb | E0,µ0)

�� n
∏

a=1

dνH(sa,ωa | E1,µ1)δ(Nq−σσσ1 · sa)

�

.

(10)
Note that among theσσσ replicas,σσσ1 is special. The m−1 replicasσσσ2, . . . ,σσσm correspond to the
replicated normalization integral overσσσ′, which is completely uncoupled from s. The variable
σσσ1 is not a replica: it is the same as σσσ in (9), and is the only of the σσσs that couples with s.

This expression can now be averaged over the disordered couplings, and its integration
evaluated using the saddle point method. We must assume the form of order among the repli-
cas s and σσσ, and we take them to be replica symmetric. Replica symmetry means that at the
saddle point, all distinct pairs of replicas have the same overlap. This choice is well-motivated
for the 3+ 4 and similar models. Details of the calculation can be found in Appendix A.

The resulting expression for the complexity, which must still be extremized over the order
parameters β̂1, r01, r11

d , r11
0 , and q11

0 , is

Σ12(E0,µ0, E1,µ1, q) = extremum
β̂1,r11

d ,r11
0 ,r01,q11

0

�

D(µ1)−
1
2
+ β̂1E1 − r11

d µ1 + β̂1

�

r11
d f ′(1)− r11

0 f ′(q11
0 )
�

+ β̂0β̂1 f (q) + (β̂0r01 + β̂1r10 + r00
d r01) f ′(q) +

r11
d − r11

0

1− q11
0

(r10 − qr00
d ) f

′(q)

+
1
2

�

β̂2
1

�

f (1)− f (q11
0 )
�

+ (r11
d )

2 f ′′(1) + 2r01r10 f ′′(q)− (r11
0 )

2 f ′′(q11
0 ) +

(r10 − qr00
d )

2

1− q11
0

f ′(1)

+
1− q2

1− q11
0

+

�

(r01)2 −
r11
d − r11

0

1− q11
0

�

2qr01 −
(1− q2)r11

0 − (q
11
0 − q2)r11

d

1− q11
0

��

�

f ′(1)− f ′(q(0)22 )
�

−
1

f ′(1)
f ′(1)2 − f ′(q)2

f ′(1)− f ′(q11
0 )
+

r11
d − r11

0

1− q11
0

�

r11
d f ′(1)− r11

0 f ′(q11
0 )
�

+ log

�

1− q0
11

f ′(1)− f ′(q0
11)

���

,

(11)
where the function D is defined in (A.4) of Appendix A. It is possible to further extremize
this expression over all the other variables but q11

0 , for which the saddle point conditions
have a unique solution. However, the resulting expression is quite complicated and provides
no insight. In fact, the numeric root-finding problem is more stable when preserving these
parameters, rather than analytically eliminating them.

In practice, the complexity can be calculated in two ways. First, the extremal problem can
be done numerically, initializing from q = 0 where the problem reduces to that of the single-
point complexity of points with energy E1 and stability µ1, which has an analytical solution.
Then small steps in q or other parameters are taken to analytically continue the solution. This
is how the data in all the plots of this paper was produced. Second, the complexity can be
calculated in the near neighborhood of a reference point by expanding in powers of small
∆q = 1 − q. This expansion indicates when nearby points can be found at arbitrarily small
distance, and in that case gives the form of the pseudogap in their complexity.

If there is no overlap gap between the reference point and its nearest neighbors, their
complexity can be calculated by an expansion in 1−q. First, we’ll use this method to describe
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the most common type of stationary point in the close vicinity of a reference point. These are
given by further maximizing the two-point complexity over the energy E1 and stability µ1 of
the nearby points. This gives the conditions

β̂1 = 0 , µ1 = 2r11
d f ′′(1) , (12)

where the second condition is only true for µ2
1 ≤ µ

2
m, i.e., when the nearby points are saddle

points or marginal minima. When these conditions are inserted into the complexity, an expan-
sion is made in small 1 − q, and the saddle point in the remaining parameters is taken, the
result is

Σ12 =
f ′′′(1)

8 f ′′(1)2
(µ2

m −µ
2
0)





√

√

√

2+
2 f ′′(1)
�

f ′′(1)− f ′(1)
�

f ′′′(1) f ′(1)
− 1



 (1− q) +O
�

(1− q)2
�

, (13)

independent of E0. Notice that slope of the complexity is positive for µ0 < µm and vanishes
when the stability of the reference point approaches the marginal stability. This implies that
extensive saddle points have arbitrarily close neighbors with a linear pseudogap, while stable
minima have an overlap gap with their nearest neighbors. For marginal minima, the existence
of arbitrarily close neighbors must be decided at quadratic order and higher.

To describe the properties of these most common neighbors, it is convenient to first make
a definition. The population of stationary points that are most common at each energy (the
blue line in Fig. 2) have the relation

Edom(µ0) = −
f ′(1)2 + f (1)
�

f ′′(1)− f ′(1)
�

2 f ′′(1) f ′(1)
µ0 , (14)

between E0 and µ0 for µ2
0 ≤ µ

2
m. Using this definition, the energy and stability of the most

common neighbors at small ∆q are

E1 = E0 +
1
2

v f

u f

�

E0 − Edom(µ0)
�

(1− q)2 +O
�

(1− q)3
�

, (15)

µ1 = µ0 −
v f

u f

�

E0 − Edom(µ0)
�

(1− q) +O
�

(1− q)2
�

, (16)

where v f and u f are positive functionals of f defined in (A.21) of Appendix A. The most
common neighboring saddles to a reference saddle are much nearer to the reference in energy
(∆q2) than in stability (∆q). In fact, this scaling also holds for all neighbors of a reference
saddle, not just the most common.

Because both expressions are proportional to E0 − Edom(µ0), whether the energy and sta-
bility of nearby points increases or decreases from that of the reference point depends only on
whether the energy of the reference point is above or below that of the most common popula-
tion at the same stability, i.e., to the right or left of the blue line in Fig. 2. In particular, since
Edom(µm) = Eth, the threshold energy is also the pivot around which the points asymptotically
nearby marginal minima change their properties.

To examine better the population of marginal points, it is necessary to look at the next
term in the series of the complexity with ∆q, since the linear coefficient becomes zero at the
marginal line. When µ= µm, the quadratic term in the expansion for the dominant population
of near neighbors is

Σ12 =
1
2

f ′′′(1)v f

f ′′(1)3/2u f





√

√

√2
�

f ′(1)( f ′′′(1)− f ′′(1)) + f ′′(1)2
�

f ′(1) f ′′′(1)
− 1





�

E0 − Eth

�

(1− q)2 +O
�

(1− q)3
�

.

(17)
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This coefficient is positive when E > Eth and negative when E < Eth. Therefore, marginal
minima whose energy E0 is greater than the threshold have neighbors at arbitrarily close dis-
tance with a quadratic pseudogap, while those whose energy is less than the threshold have
an overlap gap. Exactly at the threshold the cubic term in the expansion is necessary; it is not
insightful to share explicitly but it is positive for the 3+ 4 and similar models.

The properties of the nearby states above the threshold can be further quantified. Though
we know from (15) and (16) that the most common nearby points at small distance are ex-
tensive saddle points with higher energy than the reference point, we do not know what other
kinds of stationary points might also be found in close proximity. Could these marginal min-
ima sit at very small distance from other marginal minima? The answer is that the very near
neighbors are exclusively extensive saddles of higher energy. Therefore, the marginal minima
with energies above the threshold energy also have overlap gaps with one another. These
results on the range of possible neighbors are elaborated in Appendix A.5.

5 Finding the isolated eigenvalue

The two-point complexity Σ12 depends on the spectrum at both stationary points through the
determinant of their Hessians, but only on the bulk of the distribution. This bulk is unaffected
by the conditions of energy and proximity. However, these conditions give rise to small-rank
perturbations to the Hessian, which can cause a subextensive number of eigenvalues to leave
the bulk. We study the possibility of one stray eigenvalue.

We use a technique recently developed to find the smallest eigenvalue of random matri-
ces [29]. One defines an artificial quadratic statistical mechanics model with configurations
defined on the sphere, whose interaction tensor is given by the matrix of interest. By construc-
tion, the ground state is located in the direction of the eigenvector associated with the smallest
eigenvalue, and the ground state energy is proportional to that eigenvalue.

Our matrix of interest is the Hessian evaluated at a stationary point of the mixed spherical
model, conditioned on the relative position, energies, and stabilities discussed above. We
must restrict the artificial spherical model to lie in the tangent plane of the ‘real’ spherical
configuration space at the point of interest, to avoid our eigenvector pointing in a direction that
violates the spherical constraint. A sketch of the setup is shown in Fig. 7. The free energy of
the artificial model given a point s and for a specific realization of the disordered Hamiltonian
is

βFH(β | s,ω) = −
1
N

log

�∫

dxδ(x · s)δ(∥x∥2 − N)exp
§

−β
1
2

xT Hess H(s,ω)x
ª

�

= −lim
ℓ→0

1
N
∂

∂ ℓ

∫

�

ℓ
∏

α=1

dxαδ(x
T
αs)δ(N − xT

αxα)exp
§

−β
1
2

xT
α

�

∂ ∂ H(s) +ωI
�

xα

ª

�

,

(18)
where the first δ-function keeps the configurations in the tangent plane, and the second en-
forces the spherical constraint. We have anticipated treating the logarithm with replicas. We
are interested in points s that have certain properties: they are stationary points of H with
given energy density and stability, and fixed overlap from a reference configuration σσσ. We
therefore average the free energy above over such points, giving

FH(β | E1,µ1, q,σσσ) =

∫

dνH(s,ω | E1,µ1)δ(Nq−σσσ · s)
∫

dνH(s′,ω′ | E1,µ1)δ(Nq−σσσ · s′)
FH(β | s,ω)

= lim
n→0

∫

� n
∏

a=1

dνH(sa,ωa | E1,µ1)δ(Nq−σσσ · sa)

�

FH(β | s1,ω1) ,

(19)
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σσσ1

s1

σσσc

sb

xa
xb

q

Figure 7: A sketch of the vectors involved in the calculation of the isolated eigenvalue.
All replicas x, which correspond with candidate eigenvectors of the Hessian evaluated
at s1, sit in an N − 2 sphere corresponding with the tangent plane (not to scale) of
the first s replica. All of the s replicas lie on the sphere, constrained to be at fixed
overlap q with the first of the σσσ replicas, the reference configuration. All of the σσσ
replicas lie on the sphere.

again anticipating the use of replicas. Finally, the reference configuration σσσ should itself be a
stationary point of H with its own energy density and stability, as before. Averaging over these
conditions gives

FH(β | E0,µ0, E1,µ1, q) =

∫

dνH(σσσ,ς | E0,µ0)
∫

dνH(σσσ′,ς′ | E0,µ0)
FH(β | E1,µ1, q,σσσ)

= lim
m→0

∫

� m
∏

a=1

dνH(σσσa,ςa | E0,µ0)

�

FH(β | E1,µ1, q,σσσ1) .

(20)

This formidable expression is now ready to be averaged over the disordered Hamiltonians H.
Once averaged, the minimum eigenvalue of the conditioned Hessian is then given by twice the
ground state energy, or

λmin = 2 lim
β→∞

FH(β | E0,µ0, E1,µ1, q) . (21)

For this calculation, there are three different sets of replicated variables. Note that, as for the
computation of the complexity, theσσσ1 and s1 replicas are special. The first again is the only of
the σσσ replicas constrained to lie at fixed overlap with all the s replicas, and the second is the
only of the s replicas at which the Hessian is evaluated.

The calculation of this minimum eigenvalue is very similar to that of the complexity. The
details of this calculation can be found in Appendix B. The result for the minimum eigenvalue
is given by

λmin = µ1 −
�

y +
1
y

f ′′(1)
�

, (22)

where y is an order parameter whose value is set by the saddle-point conditions

0= − f ′′(1) + y2(1−X T CX ) , 0= (B − yC)X , (23)
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for X ∈ R5 a vector of order parameters, and B and C are 5× 5 matrices whose elements are
explicit functions of the order parameters from the two-point complexity problem and of f
and its derivatives. The matrices B and C are given in (B.13) and (B.14) of Appendix B.

There is a trivial solution for X = 0 and y2 = f ′′(1). This results in a minimum eigenvalue

λmin = µ1 −
Æ

4 f ′′(1) = µ1 −µm , (24)

that corresponds with the bottom edge of the semicircle distribution. This is the correct solu-
tion in the absence of an isolated eigenvalue. Any solution corresponding to the presence of
an isolated eigenvalue must have nonzero X . The only way to satisfy this with the second of
the saddle conditions (23) is for y such that one of the eigenvalues of B − yC is zero. Under
these circumstances, if the normalized eigenvector associated with the zero eigenvector is X̂0,
then X = ∥X0∥X̂0 is a solution. The magnitude ∥X0∥ of this solution is set by the first saddle
point condition, namely

∥X0∥2 =
1

X̂ T
0 CX̂0

�

1−
f ′′(1)

y2

�

. (25)

In practice, we find that X̂ T
0 CX̂0 is positive at the saddle point. Therefore, for the solution

to exist we must have y2 ≥ f ′′(1). In practice, there is at most one y which produces a zero
eigenvalue of B − yC and satisfies this inequality, so the solution seems to be unique.

With this solution, we simultaneously find the smallest eigenvalue and information about
the orientation of its associated eigenvector: namely, its overlap qmin with the tangent vector
that points directly from one stationary point to the other. This information is encoded the
order parameter vector X , and the details of how it is computed can be found at the end of
Appendix B. The emergence of an isolated eigenvalue and its associated eigenvector are shown
in Fig. 8, for the same reference point properties that were used in Fig. 3. For small overlaps,
the minimum eigenvalue corresponds with bottom of the semicircle distribution, or the trivial
solution. As the overlap is increased, one eigenvalue continuously leaves the spectrum, with an
eigenvector whose overlap with the vector between stationary points also grows continuously
from zero.

Though the two-point complexity Σ12 fails to distinguish the marginal minima at the limits
of aging dynamics, one might imagine that something related to the isolated eigenvalue might
succeed in distinguishing them. This does not appear to be the case. Above and below the
threshold energy, the nature of the isolated eigenvalue of nearest neighbors does not change:
it is always present and varies continuously. There is an energy both above and below the
threshold where the nearest marginal states transition from having an isolated eigenvalue to
not having one; see for instance in the right panel of Fig. 5 that the grey region vanishes.
One might reason that this could change the connectivity of nearby marginal-like states and
thereby the aging dynamics. However, the energies where these changes occur are not close
to the limits of aging dynamics measured by [11], so that reasoning is wrong.

6 Conclusion

We have computed the complexity of neighboring stationary points for the mixed spherical
models. When we studied the neighborhoods of marginal minima, we found something strik-
ing: only those at the threshold energy have other marginal minima nearby. For the many
marginal minima away from the threshold (including the exponential majority), there is a gap
in overlap between them.

This has implications for pictures of relaxation and aging. In most p + s models studied,
quenches from infinite to zero temperature (gradient descent starting from a random point)
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Figure 8: Properties of the isolated eigenvalue and the overlap of its associated eigen-
vector with the direction of the reference point. These curves correspond with the
lower solid curve in Fig. 3. Left: The value of the minimum eigenvalue as a function
of overlap. The dashed line shows the continuation of the bottom of the semicircle.
Where the dashed line separates from the solid line, the isolated eigenvalue has ap-
peared. Right: The overlap between the eigenvector associated with the minimum
eigenvalue and the direction of the reference point. The overlap is zero until an iso-
lated eigenvalue appears, and then it grows continuously until the nearest neighbor
is reached.

relax towards marginal states with energies above the threshold energy [22], while at least in
some models a quench to zero temperature from a temperature around the dynamic transition
relaxes towards marginal states with energies below the threshold energy [11,12]. We found
(see especially Figs. 4 and 5) that the neighborhoods of marginal states above and below
the threshold are quite different, and yet the emergent aging behavior relaxing toward states
above and below the threshold seem to be the same. Therefore, aging dynamics appears to
be insensitive to the neighborhood of the marginal state being approached. To understand
something better about why certain states attract the dynamics in certain situations, nonlocal
information, like the structure of their entire basin of attraction, seems vital.

It is possible that replica symmetry breaking among the constrained stationary points could
change the details of the two-point complexity of very nearby states. Indeed, it is difficult to
rule out RSB in complexity calculations. However, such corrections would not change the
overarching conclusions of this paper, namely that most marginal minima are separated from
each other by a macroscopic overlap gap and high barriers. This is because the replica sym-
metric complexity bounds any RSB complexities from above, and so RSB corrections can only
decrease the complexity. Therefore, the overlap gaps, which correspond to regions of negative
complexity, cannot be removed by a more detailed saddle point Ansatz.

Our calculation studied the neighborhood of typical reference points with the given en-
ergy and stability. However, it is possible that marginal minima with atypical neighborhoods
actually attract the dynamics, as has been argued in certain neural networks [30, 31]. To
determine this, a different type of calculation is needed. As our calculation is akin to the
quenched Franz–Parisi potential, study of atypical neighborhoods would entail something like
the annealed Franz–Parisi approach, i.e.,

Σ∗(E0,µ0, E1,µ1, q) =
1
N

log

�∫

dνH(σσσ,ς | E0,µ0) dνH(s,ω | E1,µ1)δ(Nq−σσσ · s)
�

, (26)

which puts the two points on equal footing. This calculation and exploration of the atypical
neighborhoods it reveals is a clear future direction.
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The methods developed in this paper are straightforwardly (if not easily) generalized to
landscapes with replica symmetry broken complexities [28]. We suspect that many of the
qualitative features of this study would persist, with neighboring states being divided into
different clusters based on the RSB order but with the basic presence or absence of overlap gaps
and the nature of the stability of near-neighbors remaining unchanged. Interesting structure
might emerge in the arrangement of marginal states in FRSB systems, where the ground state
itself is marginal and coincides with the threshold.
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A Details of the calculation for the two-point complexity

The two-point complexity defined in (9) consists of the average over integrals containing of
products of Dirac δ-functions and determinants of Hessians. To compute it, we first split the
factors into two groups: one group that contains any dependence on the Hessian (the deter-
minants and the δ-functions fixing the stabilities) and a second group containing all other δ-
functions. The average over disorder for the two groups of factors can be made independently,
which is described in subsections A.1 and A.2 for the Hessian and other factors, respectively.

Once the average is made over disorder, the result is an exponential integral that de-
pends only on scalar products between the replicated configurations s and σσσ and their con-
jugate fields. The explicit dependence on these microscopic configurations is removed using
a Hubbard–Stratonovich transformation, which replaces the scalar products with overlap or-
der parameters. This is described in subsection A.3. Finally, the complexity is an exponential
integral over several order parameter fields, and is amenable to evaluation by a saddle point
method, detailed in subsection A.4.

A.1 The Hessian factors

The factors dependant on the Hessian can be averaged over disorder using results from random
matrix theory. The double partial derivatives of the energy are Gaussian with the variance

(∂i∂ jH(s))2 =
1
N

f ′′(1) , (A.1)

which means that the matrix of partial derivatives belongs to the GOE class. Its spectrum is
given by the Wigner semicircle

ρ(λ) =

(

2
π

r

1−
�

λ
µm

�2
, λ2 ≤ µ2

m ,

0 , otherwise ,
(A.2)

with radius µm =
p

4 f ′′(1). Since the Hessian differs from the matrix of partial derivatives
by adding the constant diagonal matrix ωI , it follows that the spectrum of the Hessian is a
Wigner semicircle shifted by ω, or ρ(λ+ω).

The average over factors depending on the Hessian alone can be made separately from
those depending on the gradient or energy, since for random Gaussian fields the Hessian is
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independent of these [27]. In principle the fact that we have conditioned the Hessian to belong
to stationary points of certain energy, stability, and proximity to another stationary point will
modify its statistics, but these changes will only appear at subleading order in N [13]. This
is because the conditioning amounts to a rank-one perturbation to the Hessian matrix, which
does not affect the bulk of its spectrum. At leading order, the expectations related to different
replicas factorize, each yielding
�

�detHess H(s,ω)
�

�δ
�

Nµ− Tr Hess H(s,ω)
�

= eN
∫

dλρ(λ+µ) log |λ|δ(Nµ− Nω) , (A.3)

Therefore, each of the Lagrange multipliers is fixed to one of the stabilities µ. We define the
function

D(µ) =
∫

dλρ(λ+µ) log |λ|

=







1
2 + log
�1

2µm

�

+ µ
2

µ2
m

, µ2 ≤ µ2
m ,

1
2 + log
�1

2µm

�

+ µ
2

µ2
m
−
�

�

�

µ
µm

�

�

�

r

� µ
µm

�2 − 1− log
�
�

�

�

µ
µm

�

�

�−
r

� µ
µm

�2 − 1
�

, µ2 > µ2
m ,

(A.4)
and using it the full factor due to the Hessians can be written

eNmD(µ0)+NnD(µ1)

� m
∏

a

δ(Nµ0 − Nςa)

�� n
∏

a

δ(Nµ1 − Nωa)

�

. (A.5)

A.2 The other factors

The other factors consist of δ-functions of the gradient and δ-functions containing the energy
and spherical constraints. We take advantage of the Fourier representation of the δ-function
to express each of them as an exponential integral over an auxiliary field. For instance,

δ
�

∇H(s,µ1)
�

=

∫

d ŝ
(2π)N

eiŝ·∇H(s,µ1) , (A.6)

replaces a δ-function of the gradient by introducing the auxiliary field ŝ. Carrying out such a
transformation to each of the remaining factors gives an exponential integrand of the form

eNmβ̂0E0+Nnβ̂1E1−
∑m

a [(σσσa·σ̂σσa)µ0−
1
2 µ̂0(N−σσσa·σσσa)]−

∑n
a[(sa·ŝa)µ1−

1
2 µ̂1(N−sa·sa)−

1
2 µ̂12(Nq−σσσ1·sa)]+

∫

dtO(t)H(t) ,
(A.7)

where we have introduced the linear operator

O(t) =
m
∑

a

δ(t−σσσa)
�

iσ̂σσa · ∂t − β̂0

�

+
n
∑

a

δ(t− sa)
�

iŝa · ∂t − β̂1

�

, (A.8)

consolidating all of the H-dependent terms. Here the β̂s are the fields auxiliary to the energy
constraints, the µ̂s are auxiliary to the spherical and overlap constraints, and the σ̂σσs and ŝs are
auxiliary to the constraints that the gradient be zero. We have written the H-dependent terms
in this strange form for the ease of taking the average over H: since it is Gaussian-correlated,
it follows that

e
∫

dtO(t)H(t) = e
1
2

∫

dt dt′O(t)O(t′)H(t)H(t′) = eN 1
2

∫

dt dt′O(t)O(t′) f
�

t·t′
N

�

. (A.9)

It remains only to apply the doubled operators to f and then evaluate the simple integrals
over the δ measures. We do not include these details, which were carried out with computer
algebra software. The result of this calculation is found in the effective action (A.15), where it
contributes all terms besides the functions D contributed by the Hessian terms in the previous
section and the logarithms contributed by the Hubbard–Stratonovich transformation of the
next section.
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A.3 Hubbard–Stratonovich

Having expanded the resulting expression, we are left with an argument in the exponential
which is a function of scalar products between the fields s, ŝ, σσσ, and σ̂σσ. We will change
integration coordinates from these fields to matrix fields given by their scalar products, defined
as

C00
ab =

1
N
σσσa ·σσσb , R00

ab = −i
1
N
σσσa · σ̂σσb , D00

ab =
1
N
σ̂σσa · σ̂σσb ,

C01
ab =

1
N
σσσa · sb , R01

ab = −i
1
N
σσσa · ŝb , R10

ab = −i
1
N
σ̂σσa · sb , D01

ab =
1
N
σ̂σσa · ŝb ,

C11
ab =

1
N

sa · sb , R11
ab = −i

1
N

sa · ŝb , D11
ab =

1
N

ŝa · ŝb .

(A.10)

We insert into the integral the product of δ-functions enforcing these definitions, integrated
over the new matrix fields, which is equivalent to multiplying by one. For example, one such
factor of one is given by

1=

∫

dC00 1
N m2

m
∏

ab

δ(NC00
ab −σσσa ·σσσb) . (A.11)

Once this is done, the many scalar products appearing throughout the integrand can be re-
placed by the matrix fields. The only dependence of the original vector fields is from these
new δ-functions. These are treated schematically in following way: let {aa}= {sa,σσσa, ŝa,σ̂σσa}
index all of the original vector fields, and let Qab =

1
N aa ·ab likewise concatenate all of the ma-

trix fields. Then the δ-functions described above can be promoted to an exponential integral
of the form

∫

da dQ̂ eN 1
2 Tr Q̂Q− 1

2 aT Q̂a , (A.12)

using an auxiliary matrix field Q̂. The integral over the vector fields a is Gaussian and can be
evaluated, giving

∫

dQ̂ eN Tr Q̂Q(det Q̂)−N/2 =

∫

dQ̂ e
1
2 N(Tr Q̂Q−logdet Q̂) . (A.13)

Finally, the integral over Q̂ can be evaluated using the saddle point method, giving Q̂ = Q−1.
Therefore, the term contributed to the effective action as a result of the transformation is

1
2

log detQ =
1
2

logdet







C00 iR00 C01 iR01

iR00 D00 iR10 D01

C01 iR10 C11 iR11

iR01 D01 iR11 D11






. (A.14)

A.4 Replica Ansatz and saddle point

After the transformation of the previous section, the complexity has been brought to the form
of an exponential integral over the matrix order parameters (A.10), proportional to N . We are
therefore in the position to evaluate this integral using a saddle point method. We will always
assume that the square matrices C00, R00, D00, C11, R11, and D11 are hierarchical matrices,
i.e., of the Parisi form, with each set of three sharing the same structure. In particular, we
immediately define c00

d , r00
d , d00

d , c11
d , r11

d , and d11
d as the value of the diagonal elements of

these matrices, respectively. Note that c00
d = c11

d = 1 due to the spherical constraint.
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In this paper, we focus on models with a replica symmetric complexity, but many of the
intermediate formulae are valid for arbitrary replica symmetry breakings. At most 1RSB in
equilibrium is guaranteed if the function χ(q) = f ′′(q)−1/2 is convex [16]. The complexity at
the ground state must reflect the structure of equilibrium, and therefore be replica symmetric.
Recent work has found that the complexity of saddle points can have other RSB orders even
when the ground state is replica symmetric, but the 3+4 model has a safely replica symmetric
complexity everywhere [19].

Defining the ‘block’ fields Q00 = (β̂0, µ̂0, C00, R00, D00), Q11 = (β̂1, µ̂1, C11, R11, D11), and
Q01 = (µ̂01, C01, R01, R10, D01) the resulting complexity is

Σ12 =
1
N

lim
n→0

lim
m→0

∂

∂ n

∫

dQ00 dQ11 dQ01 eNmS0(Q00)+NnS1(Q11,Q01|Q00) , (A.15)

where

S0(Q00) = β̂0E0 − r00
d µ0 −

1
2
µ̂0(1− c00

d ) +D(µ0)

+
1
m

§

1
2

m
∑

ab

�

β̂2
1 f (C00

ab) + (2β̂1R00
ab − D00

ab) f
′(C00

ab) + (R
00
ab)

2 f ′′(C00
ab)
�

+
1
2

log det

�

C00 iR00

iR00 D00

�

ª

,

(A.16)
is the action for the ordinary, one-point complexity, and the remainder is given by

S1(Q11,Q01 |Q00) = β̂1E1 − r11
d µ1 −

1
2
µ̂1(1− c11

d ) +D(µ1)

+
1
n

n
∑

b

§

−
1
2
µ̂12(q− C01

1b )

+
m
∑

a

�

β̂0β̂1 f (C01
ab) + (β̂0R01

ab + β̂1R10
ab − D01

ab) f
′(C01

ab) + R01
abR10

ab f ′′(C01
ab)
�

ª

+
1
n

§

1
2

n
∑

ab

�

β̂2
1 f (C11

ab) + (2β̂1R11
ab − D11

ab) f
′(C11

ab) + (R
11
ab)

2 f ′′(C11
ab)
�

+
1
2

log det

�

�

C11 iR11

iR11 D11

�

−
�

C01 iR01

iR10 D01

�T �
C00 iR00

iR00 D00

�−1 �
C01 iR01

iR10 D01

�

�

ª

.

(A.17)
Because of the structure of this problem in the twin limits of m and n to zero, the parameters
Q00 can be evaluated at a saddle point of S0 alone. This means that these parameters will take
the same value they take when the ordinary, 1-point complexity is calculated. For a replica
symmetric complexity of the reference point, this results in

β̂0 = −
µ0 f ′(1) + E0

�

f ′(1) + f ′′(1)
�

u f
, (A.18)

r00
d =

µ0 f (1) + E0 f ′(1)
u f

, (A.19)

d00
d =

1
f ′(1)

−
�

µ0 f (1) + E0 f ′(1)
u f

�2

, (A.20)

where we define for brevity (here and elsewhere) the constants

u f = f (1)
�

f ′(1) + f ′′(1)
�

− f ′(1)2 , v f = f ′(1)
�

f ′′(1) + f ′′′(1)
�

− f ′′(1)2 . (A.21)
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Note that because the coefficients of f must be nonnegative for f to be a sensible covariance,
both u f and v f are strictly positive.4

In general, we except the m× n matrices C01, R01, R10, and D01 to have constant rows of
length n, with blocks of rows corresponding to the RSB structure of the single-point complexity
for the model. For the scope of this paper, where we restrict ourselves to replica symmetric
complexities, they have the following form at the saddle point:

C01 =

← n →














q · · · q
0 · · · 0
...

. . .
...

0 · · · 0















↑
m− 1
↓

, R01 =









r01 · · · r01
0 · · · 0
...

. . .
...

0 · · · 0









,

R10 =









r10 · · · r10
0 · · · 0
...

. . .
...

0 · · · 0









, D01 =









d01 · · · d01
0 · · · 0
...

. . .
...

0 · · · 0









,

(A.22)

where only the first row is nonzero. The other entries, which correspond to the completely
uncorrelated replicas in an RSB picture, are all zero because uncorrelated vectors on the sphere
are orthogonal.

The most challenging part of inserting our replica symmetric Ansatz is the volume element
in the logdet, which involves the product and inverse of block replica matrices. The inverse
of block hierarchical matrix is still a block hierarchical matrix, since
�

C00 iR00

iR00 D00

�−1

=

�

(C00D00 + R00R00)−1D00 −i(C00D00 + R00R00)−1R00

−i(C00D00 + R00R00)−1R00 (C00D00 + R00R00)−1C00

�

, (A.23)

and hierarchical matrices are closed under inverses and products. Because of the structure of
the 01 matrices, the volume element will depend only on the diagonals of the matrices in this
inverse block matrix. If we define

c̃00
d = [(C

00D00 + R00R00)−1C00]d , (A.24)

r̃00
d = [(C

00D00 + R00R00)−1R00]d , (A.25)

d̃00
d = [(C

00D00 + R00R00)−1D00]d , (A.26)

as the diagonals of the blocks of the inverse matrix, then the result of the product is
�

C01 iR01

iR10 D01

�T �
C00 iR00

iR00 D00

�−1 �
C01 iR01

iR10 D01

�

=
�

q2d̃00
d + 2qr10 r̃00

d − r2
10d̃00

d i
�

d01(r10 c̃00
d − qr̃00

d ) + r01(r10 r̃00
d + qd̃00

d )
�

i
�

d01(r10 c̃00
d − qr̃00

d ) + r01(r10 r̃00
d + qd̃00

d )
�

d2
01 c̃00

d + 2r01d01 r̃00
d − r2

01d̃00
d

�

,

(A.27)
where each block is a constant n × n matrix. Because the matrices C00, R00, and D00 are
diagonal in the replica symmetric case, the diagonals of the blocks above take a simple form:

c̃00
d = f ′(1) , r̃00

d = r00
d f ′(1) , d̃00

d = d00
d f ′(1) . (A.28)

Once these expressions are inserted into the complexity, the limits of n and m to zero can be
taken, and the parameters from D01 and D11 can be extremized explicitly. The result is (11)
from section 4 of the main text.

4Note also that u f = vf = 0 if f is a homogeneous polynomial as in the pure models. These expressions are
invalid for the pure models because µ0 and E0 cannot be fixed independently; we would have done the equivalent
of inserting two identical δ-functions. For the pure models, the terms β̂0 and β̂1 must be set to zero in our prior
formulae (as if the energy was not constrained) and then the saddle point taken.
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Figure 9: Demonstration of the convergence of the (1 − q)-expansion for marginal
reference minima. Solid lines and shaded region show are the same as in Fig. 5 for
E0 − Eth ≃ 0.00667. The dotted lines show the expansion of most common neigh-
bors, while the dashed lines in both plots show the expansion for the minimum and
maximum energies and stabilities found at given q.

A.5 The range of energies and stabilities of nearby points

The range of parameters that result in a positive complexity is found by taking the complexity
(11) and further requiring that Σ12 = 0. The maximum and minimum stability are then found
by maximizing this constrained expression over the energy, while the maximum and minimum
energy are found by maximizing it over the stability. In the small-∆q expansion outlined in
§4, these ranges can be computed analytically. We share the results here for the neighbors
to marginal minima with energies greater than the threshold energy, and confirm that the
analytically computed ranges match those found numerically.

The limit of stability in which nearby points are found to marginal minima above the thresh-
old are given by µ1 = µm + δµ1(1− q)± δµ2(1− q)3/2 +O

�

(1− q)2
�

where δµ1 is given by
the coefficient in (16) and

δµ2 =
v f

f ′(1) f ′′(1)3/4

√

√

√ E0 − Eth

2

2 f ′′(1)
�

f ′′(1)− f ′(1)
�

+ f ′(1) f ′′′(1)

u f
. (A.29)

Since the limits differ from the most common points at higher order in ∆q, nearby points are
of the same kind as the most common population. Similarly, one finds that the energy lies in
the range E1 = E0+δE1(1− q)2±δE2(1− q)5/2+O

�

(1− q)3
�

for δE1 given by the coefficient
in (15) and

δE2 =

p

E0 − Eth

4 f ′(1) f ′′(1)3/4

� v f

3u f

�

f ′(1)(2 f ′′(1)− (2− (2−δq0)δq0) f
′′′(1))− 2 f ′′(1)2

�

×
�

f ′(1)
�

6 f ′′(1) + (18− (6−δq0)δq0) f
′′′(1)
�

− 6 f ′′(1)2
�

�
1
2

,

(A.30)
and δq0 is the coefficient in the expansion q0 = 1− δq0(1− q) +O((1− q)2) and is given by
the real root to the quintic equation

0= ((16− (6−δq0)δq0)δq0 − 12) f ′(1) f ′′′(1)− 2δq0( f
′′(1)− f ′(1)) f ′′(1) . (A.31)

These predictions from the small 1 − q expansion are compared with numeric saddle points
for the complexity of marginal minima in Fig. 9, and the results agree well at small 1− q.
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B Details of calculation for the isolated eigenvalue

Many of the steps in the evaluation of the isolated eigenvalue are similar to those from the
evaluation of the two-point complexity: the treatment of the average over disorder and the
Hubbard–Stratonovich transformation follow the exact same reasoning. We will not repeat
the details of techniques that were already reported in the previous appendix.

The treatment of the factors in the average over disorder proceeds as it does for the com-
plexity in A.2, now with the disorder-dependent terms captured in the linear operator

O(t) =
m
∑

a

δ(t−σσσa)(iσ̂σσa ·∂t− β̂0)+
n
∑

b

δ(t−sb)(iŝb ·∂t− β̂1)−
1
2
δ(t−s1)β

ℓ
∑

c

(xc ·∂t)
2 , (B.1)

that is applied to H by integrating over t ∈ RN . The resulting expression for the integrand pro-
duces dependencies on the scalar products in (A.10) and on the new scalar products involving
the tangent plane vectors x:

Aab =
1
N

xa · xb , X 0
ab =

1
N
σσσa · xb , X̂ 0

ab = −i
1
N
σ̂σσa · xb , X 1

ab =
1
N

sa · xb , X̂ 1
ab = −i

1
N

ŝa · xb .

(B.2)

Replacing the original variables using a Hubbard–Stratonovich transformation then pro-
ceeds like it did for the complexity in subsection A.3. Defining as before a block variable
Qx = (A, X 0, X̂ 0, X 1, X̂ 1) and consolidating the previous block variables Q = (Q00,Q01,Q11),
we can write the minimum eigenvalue schematically as

λmin = −2 lim
β→∞

lim
ℓ→0
m→0
n→0

∂

∂ ℓ

1
βN

∫

dQ dQx eN[mS0(Q00)+nS1(Q11,Q01|Q00)+ℓSx (Qx |Q00,Q01,Q11)] , (B.3)

where S0 is given by (A.16), S1 is given by (A.17), and the new action Sx is given by

ℓSx(Qx |Q) = −
1
2
ℓβµ1 +

1
2
β

ℓ
∑

b

§

1
2
β f ′′(1)

l
∑

a

A2
ab

+
m
∑

a

��

β̂0 f ′′(C01
a1 ) + R10

a1 f ′′′(C01
a1 )
�

(X 0
ab)

2 + 2 f ′′(C01
a1 )X

0
ab X̂ 0

ab

�

+
n
∑

a

��

β̂1 f ′′(C11
a1 ) + R11

a1 f ′′′(C11
a1 )
�

(X 1
ab)

2 + 2 f ′′(C11
a1 )X

1
ab X̂ 1

ab

�

ª

+
1
2

logdet









A−







X 0

X̂ 0

X 1

X̂ 1







T 





C00 iR00 C01 iR01

iR00 D00 iR10 D01

(C01)T (iR10)T C11 iR11

(iR01)T (D01)T iR11 D11







−1





X 0

X̂ 0

X 1

X̂ 1















.

(B.4)

As usual in these quenched Franz–Parisi style computations, the saddle point expressions for
the variables Q in the joint limits of m, n, and ℓ to zero are independent of Qx , and so these
quantities take the same value they do for the two-point complexity that we computed above.
The saddle point conditions for the variables Qx are found by extremizing with respect to the
action once the variables Q from the complexity have been fixed.

To evaluate this expression, we need a sensible Ansatz for the variables Qx . The matrix
A we expect to be an ordinary hierarchical matrix, and since the model is a spherical 2-spin
the finite but low temperature order will be replica symmetric with nonzero a0. The expected
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form of the X matrices follows our reasoning for the 01 matrices of the Appendix A.4: namely,
they should have constant rows and a column structure which matches that of the level of RSB

order associated with the degrees of freedom that parameterize the columns. Since both the
reference configurations and the constrained configurations have replica symmetric order, we
expect

X 0 =

← ℓ →














x0 · · · x0
0 · · · 0
...

. . .
...

0 · · · 0















↑
m− 1
↓

, X̂ 0 =









x̂0 · · · x̂0
0 · · · 0
...

. . .
...

0 · · · 0









,

X 1 =

← ℓ →














0 · · · 0
x1 · · · x1
...

. . .
...

x1 · · · x1















↑
n− 1
↓

, X̂ 1 =









x̂0
1 · · · x̂0

1
x̂1

1 · · · x̂1
1

...
. . .

...
x̂1

1 · · · x̂1
1









.

(B.5)

Here, the lower blocks of the 0 matrices are zero, because the replicas whose overlap they
represent (that of the normalization of the reference configuration) have no correlation with
the reference or anything else. The first row of the X 1 matrix needs to be zero because of the
constraint that the tangent space vectors lie in the tangent plane to the sphere, and therefore
have xa · s1 = 0 for any a. This produces five parameters to deal with, which we compile in
the vector X = (x0, x̂0, x1, x̂1

1 , x̂0
1).

Inserting this Ansatz is straightforward in the first part of (B.4), but the term with log det
is again more complicated. We must invert the block matrix inside. We define







C00 iR00 C01 iR01

iR00 D00 iR10 D01

(C01)T (iR10)T C11 iR11

(iR01)T (D10)T iR11 D11







−1

=

�

M11 M12
M T

12 M22

�

, (B.6)

where the blocks inside the inverse are given by

M11 =

�

�

C00 iR00

iR00 D00

�

−
�

C01 iR01

iR10 D01

��

C11 iR11

iR11 D11

�−1 �
C01 iR01

iR10 D01

�T�−1

, (B.7)

M12 = −M11

�

C01 iR01

iR10 D01

��

C11 iR11

iR11 D11

�−1

, (B.8)

M22 =

�

�

C11 iR11

iR11 D11

�

−
�

C01 iR01

iR10 D01

�T �
C00 iR00

iR00 D00

�−1 �
C01 iR01

iR10 D01

�

�−1

. (B.9)

Here, M22 is the inverse of the matrix already analyzed as part of (A.17). Following our
discussion of the inverses of block replica matrices above, and reasoning about their products
with the rectangular block-constant matrices, things can be worked out using a computer
algebra system. For instance, the second term in M11 contributes nothing once the appropriate
limits are taken, because each contribution is proportional to n.

The contribution from the product with the block inverse matrix can be written as
�

X0

iX̂0

�T

M11

�

X0

iX̂0

�

+ 2

�

X0

iX̂0

�T

M12

�

X1

iX̂1

�

+

�

X1

iX̂1

�T

M22

�

X1

iX̂1

�

, (B.10)
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and without too much reasoning one can see that the result is an ℓ× ℓ constant matrix. If A is
a replica matrix and c is a constant, then

logdet(A− c) = logdet A−
c

∑k
i=0(ai+1 − ai)x i+1

, (B.11)

where ak+1 = 1 and xk+1 = 1. The basic form of the action is therefore (for replica symmetric
A)

2Sx(Qx |Q) = −βµ1 +
1
2
β2 f ′′(1)(1− a2

0) + log(1− a0) +
a0

1− a0
+X T
�

βB −
1

1− a0
C
�

X ,

(B.12)
where the matrix B comes from the X -dependent parts of the first lines of (B.4) and is given
by

B =













β̂0 f ′′(q) + r10 f ′′′(q) f ′′(q) 0 0 0
f ′′(q) 0 0 0 0

0 0 −β̂1 f ′′(q11
0 )− r11

0 f ′′′(q11
0 ) − f ′′(q11

0 ) 0
0 0 − f ′′(q11

0 ) 0 0
0 0 0 0 0













, (B.13)

and where the matrix C encodes the coefficients of the quadratic form (B.10), and is given
element-wise by

C11 = d00
d f ′(1) , C12 = r00

d f ′(1) , C22 = − f ′(1) ,

C13 =
1

1− q0

�

(r11
d − r11

0 )

�

r01 − q
r11

d − r11
0

1− q0

�

( f ′(1)− f ′(q0)) + q f ′(1)d00
d

+ r00
d (r

10 f ′(1) + (r11
d − r11

0 ) f
′(q))

�

,

C15 = r00
d f ′(q) +

�

r01 − q
r11

d − r11
0

1− q0

�

( f ′(1)− f ′(q0)) , C14 = −C15 ,

C23 =
1

1− q0

�

(qr00
d − r10) f ′(1)− (r11

d − r11
0 ) f

′(q)
�

, C24 = f ′(q) , C25 = −C24 ,

(B.14)

C33 = −
r11

d − r11
0

1− q0

�

r11
d − r11

0

1− q0
f ′(1)− 2

�

qr01 − r11
0

1− q0
+

1− q2

1− q0

r11
d − r11

0

1− q0

�

( f ′(1)− f ′(q0))

− 2
qr00 − r10

1− q0
f ′(q)

�

−
1− q2

(1− q0)2
−
(r10 − qr00

d )
2

(1− q0)2
f ′(1) ,

C34 = −(qr01 − r11
0 )

f ′(1)− f ′(q0)
1− q0

−
r11

d − r11
0

1− q0

�

1− q2

1− q0
( f ′(1)− f ′(q0))− f ′(q0)

�

− f ′(q)
qr00

d − r10

1− q0
,

C35 = −C34 −
r11

d − r11
0

1− q0
( f ′(1)− f ′(q0)) , C44 = f ′(1)− 2 f ′(q0) , C45 = f ′(q0) ,

C55 = − f ′(1) .

The saddle point conditions read

0= −β2 f ′′(1)a0 +
a0 −X T CX
(1− a0)2

, 0=
�

βB −
1

1− a0
C
�

X . (B.15)
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Note that the second of these conditions implies that the quadratic form in X in the action
vanishes at the saddle.

We would like to take the limit of β →∞. As is usual in the two-spin model, the appro-
priate limit of the order parameter is a0 = 1− (yβ)−1. Upon inserting this scaling and taking
the limit, we finally find

λmin = −2 lim
β→∞

1
β
Sx = µ1 −
�

y +
1
y

f ′′(1)
�

, (B.16)

with associated saddle point conditions

0= − f ′′(1) + y2(1−X T CX ) , 0= (B − yC)X , (B.17)

as reported in the main text.
The solution described here also encodes information about the correlation between the

eigenvector xmin associated with the minimum eigenvalue and the tangent direction connect-
ing the two stationary points x0←1. The overlap between these vectors is directly related to
the value of the order parameter x0 =

1
Nσσσ1 · xa. This tangent vector is x0←1 =

1
1−q

�

σσσ1 − qsa

�

,
which is normalized and lies strictly in the tangent plane of sa. Then the overlap between the
two vectors is

qmin =
x0←1 · xmin

N
=

x0

1− q
, (B.18)

where xmin · sa = 0 because of the restriction of the x vectors to the tangent plane at sa.

C Comparison with the Franz–Parisi potential

The comparison between the Franz–Parisi potential at zero temperature and the minimum-
energy limit of the two-point complexity is of interest to some specialists because the two com-
putations qualitatively describe the same thing. However, it was previously found that the two
computations produce different results in the pure spherical models, to the surprise of those
researchers [13]. Understanding this difference is subtle. The zero-temperature Franz–Parisi
potential underestimates the energy where nearby minima are found, because it includes any
configuration that is a minimum on the subspace created by constraining the overlap. Many
of these configurations will not have zero gradient perpendicular to the overlap constraint
manifold, and therefore are not proper minima of the energy.

A strange feature of the comparison for the pure spherical models was that the two-point
complexity and the Franz–Parisi potential coincided at their local maximum in q. It is not clear
why this coincidence occurs, but it is good news for those who use the Franz–Parisi potential
to estimate the height of the free energy barrier between states. Though it everywhere else
underestimates the energy of nearby states, it correctly gives the value of this highest barrier.

Here, we compute the Franz–Parisi potential for the mixed spherical models at zero tem-
perature, with respect to a reference configuration fixed to be a stationary point of energy E0
and stability µ0 [32,33]. Comparing with the lower energy boundary of the 2-point complex-
ity, we find that the story in the mixed models is the same as that in the pure models: the
Franz–Parisi potential underestimates the lowest energy of nearby minima almost everywhere
except at its peak, where the two measures coincide.

The potential is defined as the average free energy of a system constrained to lie with a
fixed overlap q with a reference configuration (here a stationary point with fixed energy and
stability), and given by

βVβ(q | E0,µ0) = −
1
N

∫

dνH(σσσ,ς | E0,µ0)
∫

dνH(σσσ′,ς′ | E0,µ0)
log
�

∫

dsδ
�

∥s∥2 − N
�

δ(σσσ · s− Nq) e−βH(s)
�

.

(C.1)
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Both the denominator and the logarithm are treated using the replica trick, which yields

βVβ(q | E0,µ0)

= −
1
N

lim
m→0
n→0

∂

∂ n

∫

� m
∏

b=1

dνH(σσσb,ςb | E0,µ0)

�� n
∏

a=1

dsa δ(∥sa∥2 − N)δ(σσσ1 · sa − Nq) e−βH(sa)

�

.

(C.2)
The derivation of this proceeds in much the same way as for the complexity or the isolated
eigenvalue. Once the δ-functions are converted to exponentials, the H-dependent terms can
be expressed by convolution with the linear operator

O(t) =
m
∑

a

δ(t−σσσa)
�

iσ̂σσa · ∂t − β̂0

�

− β
n
∑

a

δ(t− sa) . (C.3)

Averaging over H squares the application of this operator to f as before. After performing a
Hubbard–Stratonovich using matrix order parameters identical to those used in the calculation
of the complexity, we find that

βVβ(q | E0,µ0) = −
1
N

lim
m→0
n→0

∂

∂ n

∫

dQ0 dQ1 eNmS0(Q0)+NnSFP(Q1|Q0) , (C.4)

where S0 is the same as in (A.16) and

nSFP =
1
2
β2

n
∑

ab

f (Qab) + β
m
∑

a

n
∑

b

�

β̂0 f (C01
ab) + R10

ab f ′(C01
ab)
�

+
1
2

logdet

�

Q−
�

C01

iR10

�T �
C00 iR00

iR00 D00

�−1 �
C01

iR10

�

�

.

(C.5)

Here, because we are at low but nonzero temperature for the constrained configuration, we
make a 1RSB anstaz for the matrix Q, while the 00 matrices will take their saddle point value
for the one-point complexity and the 01 matrices have the same structure as (A.22). Inserting
these gives

βVβ =
1
2
β2
�

f (1)− (1− x) f (q1)− x f (q0)
�

+ ββ̂0 f (q) + β r10 f ′(q)−
1− x

x
log(1− q1)

+
1
x

log(1− (1− x)q1 − xq0) +
q0 − d00

d f ′(1)q2 − 2r00
d f ′(1)r10q+ (r10)2 f ′(1)

1− (1− x)q1 − xq0
.

(C.6)
The saddle point for r10 can be taken explicitly. After this, we take the limit of β →∞. There
are two possibilities. First, in the replica symmetric case x = 1, and in the limit of large β q0
will scale like q0 = 1− (y0β)−1. Inserting this, the limit is

V RS
∞ = −β̂0 f (q)− r00

d f ′(q)q−
1
2

�

y0(1− q2) +
f ′(1)2 − f ′(q)2

y0 f ′(1)

�

. (C.7)

The saddle point in y0 can now be taken, taking care to choose the solution for y0 > 0. This
gives

V RS
∞(q | E0,µ0) = −β̂0 f (q)− r00

d f ′(q)q−
√

√

(1− q2)
�

1−
f ′(q)2

f ′(1)2

�

. (C.8)

The second case is when the inner statistical mechanics problem has replica symmetry break-
ing. Here, q0 approaches a nontrivial limit, but x = zβ−1 approaches zero and q1 = 1−(y1β)−1
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Figure 10: Comparison of the lowest-energy stationary points at overlap q with a
reference minimum of E0 = −1.71865 < Eth and µ0 = 6.1 > µm (yellow, top),
and the zero-temperature Franz–Parisi potential with respect to the same reference
minimum (blue, bottom). The two curves coincide precisely at their minimum q = 0
and at the local maximum q ≃ 0.5909.

approaches one. The result is

V 1RSB
∞ (q | E0,µ0) = −β̂0 f (q)− r00

d f ′(q)q−
1
2

�

z( f (1)− f (q0)) +
f ′(1)

y1
−

y1(q2 − q0)
1+ y1z(1− q0)

− (1+ y1z(1− q0))
f ′(q)2

y1 f ′(1)
+

1
z

log (1+ z y1(1− q0))
�

.

(C.9)
Though the saddle point in y1 can be evaluated in this expression, it delivers no insight. The
final potential is found by taking the saddle over z, y1, and q0. A plot comparing the result to
the minimum energy saddles is found in Fig. 10. As noted above, there is little qualitatively
different from what was found in [13] for the pure models.
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