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How to count in hierarchical landscapes: A full solution to mean-field complexity
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We derive the general solution for counting the stationary points of mean-field complex landscapes. It
incorporates Parisi’s solution for the ground state, as it should. Using this solution, we count the stationary points
of two models: one with multistep replica symmetry breaking and one with full replica symmetry breaking.
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I. INTRODUCTION

The computation of the number of metastable states of
mean-field spin glasses goes back to the beginning of the
field. Over 40 years ago, Bray and Moore [1] attempted the
first calculation for the Sherrington–Kirkpatrick model, in a
paper remarkable for being one of the first applications of
a replica symmetry breaking (RSB) scheme. As was clear
when the actual ground state of the model was computed by
Parisi with a different scheme, the Bray–Moore result was
not exact, and the problem has been open ever since [2].
To date, the program of computing the number of stationary
points—minima, saddle points, and maxima—of mean-field
complex landscapes has been only carried out for a small
subset of models, including most notably the (pure) p-spin
model (p > 2) [3–6] and for similar energy functions inspired
by molecular biology, evolution, and machine learning [7–9].
In a parallel development, it has evolved into an active field of
probability theory [10–12].

In this paper we present what we argue is the gen-
eral replica ansatz for the number of stationary points of
generic mean-field models, which we expect to include the
Sherrington–Kirkpatrick model. It reproduces the Parisi result
in the limit of small temperature for the lowest states, as it
should.

To understand the importance of this computation, con-
sider the following situation. When one solves the problem of
spheres in large dimensions, one finds that there is a transition
at a given temperature to a one-step replica symmetry break-
ing (1RSB) phase at a Kauzmann temperature, and, at a lower
temperature, another transition to a full RSB (FRSB) phase
(see Refs. [13,14], the so-called “Gardner” phase [15]). Now,
this transition involves the lowest equilibrium states. Because
they are obviously unreachable at any reasonable timescale, a
common question is: what is the signature of the Gardner tran-
sition line for higher than equilibrium energy-densities? This
is a question whose answers are significant to interpreting the
results of myriad experiments and simulations [16–25] (see,
for a review [26]). For example, when studying “jamming” at
zero temperature, the question is posed as, “On what side of
the 1RSB–FRSB transition are high-energy (or low-density)
states reachable dynamically?” One approach to answering
such questions makes use of “state following,” which tracks
metastable thermodynamic configurations to their zero tem-
perature limit [27–31]. In the present paper we give a purely

geometric approach: We consider the local energy minima at
a given energy and study their number and other properties;
the solution involves a replica-symmetry breaking scheme that
is well-defined and corresponds directly to the topological
characteristics of those minima.

Perhaps the most interesting application of this compu-
tation is in the context of optimization problems; see, for
example, Refs. [32–34]. A question that appears there is how
to define a “threshold” level, the lowest energy level that good
algorithms can expect to reach. This notion was introduced in
the context of the pure p-spin models, as the energy at which
level sets of the energy in phase-space percolate, explaining
why dynamics never go below that level [35]. The notion
of a “threshold” for more complicated landscapes has later
been invoked several times, never to our knowledge in a clear
and unambiguous way. One of the purposes of this paper is
to give a sufficiently detailed characterization of a general
landscape so that a meaningful general notion of threshold
may be introduced—if this is at all possible.

The format of this paper is as follows. In Sec. II, we
introduce the mean-field model of study, the mixed p-spin
spherical model. In Sec. III we review details of the equilib-
rium solution that are relevant to our study of the landscape
complexity. In Sec. IV we derive a generic form for the com-
plexity. In Sec. V we make and review the hierarchical replica
symmetry breaking ansatz used to solve the complexity. In
Sec. VI we write down the solution in a specific and limited
regime, which is nonetheless helpful as it gives a foothold
for numerically computing the complexity everywhere else.
Sec. VII explains aspects of the solution specific to the case
of full RSB, and derives the replica symmetric to full FRSB
(RS–FRSB) transition line. Sec. VIII details the landscape
topology of two example models: a 3 + 16 model with a 2RSB
ground state and a 1RSB complexity, and a 2 + 4 with a FRSB
ground state and a FRSB complexity. Finally Sec. IX provides
some interpretation of our results.

II. THE MODEL

For definiteness, we consider the mixed p-spin spherical
model, whose Hamiltonian

H (s) = −
∑

p

1

p!

N∑
i1···ip

J (p)
i1···ip

si1 · · · sip (1)
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is defined for vectors s ∈ RN confined to the sphere ‖s‖2 = N .
The coupling coefficients J are taken at random, with zero
mean and variance (J (p) )2 = ap p!/2N p−1 chosen so that the
energy is typically extensive. The overbar will always denote
an average over the coefficients J . The factors ap in the vari-
ances are freely chosen constants that define the particular
model. For instance, the so-called “pure” models have ap = 1
for some p and all others zero.

The variance of the couplings implies that the covariance
of the energy with itself depends on only the dot product (or
overlap) between two configurations. In particular, one finds

H (s1)H (s2) = N f
( s1 · s2

N

)
, (2)

where f is defined by the series

f (q) = 1

2

∑
p

apqp. (3)

One need not start with a Hamiltonian like Eq. (1), defined as
a series: instead, the covariance rule (2) can be specified for
arbitrary, nonpolynomial f , as in the “toy model” of Mézard
and Parisi [36].

The family of mixed p-spin models may be considered as
the most general models of generic Gaussian functions on
the sphere. To constrain the model to the sphere, we use a
Lagrange multiplier μ, with the total energy being

H (s) + μ

2
(‖s‖2 − N ). (4)

For reasons that will become clear in Sec. IV A 1, we refer
to μ as the stability parameter. At any stationary point, the
gradient and Hessian are given by

∇H (s, μ) = ∂H (s) + μs, Hess H (s, μ) = ∂∂H (s) + μI,

(5)

where ∂ = ∂
∂s always. An important observation was made by

Bray and Dean [37] that gradient and Hessian are independent
for Gaussian random functions. The average over disorder
breaks into a product of two independent averages, one for
any function of the gradient and one for any function of the
Hessian. In particular, the number of negative eigenvalues at
a stationary point, which sets the index I of the saddle, is a
function of the Hessian alone (see Fyodorov [38] for a detailed
discussion).

III. EQUILIBRIUM

Here we review the equilibrium solution, which has been
studied in detail [39–42]. For a succinct review, see Ref. [43].
The free energy, averaged over disorder, is

βF = −ln
∫

ds δ(‖s‖2 − N ) e−βH (s). (6)

Once n replicas are introduced to treat the logarithm, the
fields sa can be replaced with the new n × n matrix field
Qab ≡ (sa · sb)/N . This yields for the free energy

βF = −1 − ln 2π − 1

2
lim
n→0

1

n

(
β2

n∑
ab

f (Qab) + ln det Q

)
,

(7)

which must be evaluated at the Q which maximizes this ex-
pression and whose diagonal is one. The solution is generally
a hierarchical matrix à la Parisi. The properties of these matri-
ces is reviewed in Sec. A, including how to write down Eq. (7)
in terms of their parameters.

The free energy can also be written in a functional form,
which is necessary for working with the solution in the limit
k → ∞, the so-called full replica symmetry breaking (FRSB).
If P(q) is the probability distribution for elements q in a row
of the matrix, then define χ (q) by

χ (q) =
∫ 1

q
dq′

∫ q′

0
dq′′ P(q′′). (8)

Since it is the double integral of a probability distribution, χ

must be concave, monotonically decreasing, and have χ (1) =
0 and χ ′(1) = −1. The function χ turns out to have an
interpretation as the spectrum of the hierarchical matrix Q.
Using standard arguments, the free energy can be written as a
functional over χ as

βF = −1 − ln 2π − 1

2

∫ 1

0
dq

(
β2 f ′′(q)χ (q) + 1

χ (q)

)
,

(9)

which must be maximized with respect to χ given the con-
straints outlined above.

In our study of the landscape, the free energy will not be
directly relevant anywhere except at the ground state, when
the temperature is zero or β → ∞. Here, the measure will
be concentrated in the lowest minima, and the average energy
〈E〉0 = limβ→∞ ∂

∂β
βF will correspond to the ground-state en-

ergy E0. The zero temperature limit is most easily obtained by
putting xi = x̃ixk and xk = β̃/β, qk = 1 − z/β, which ensures
the x̃i, β̃, and z have nontrivial limits. Inserting the ansatz
and taking the limit, carefully treating the kth term in each
sum separately from the rest, one can show after some algebra
that

β̃〈E〉0 = β̃ lim
β→∞

∂ (βF )

∂β

= −1

2
zβ̃ f ′(1) − 1

2
lim
n→0

1

n

×
[
β̃2

n∑
ab

f (Q̃ab) + ln det(β̃z−1Q̃ + I )

]
, (10)

where Q̃ is a (k − 1)RSB matrix with entries q̃1 = limβ→∞ q1,
..., q̃k−1 = limβ→∞ qk−1 parameterized by x̃1, . . . , x̃k−1. This
is a (k − 1)RSB ansatz whose spectrum in the determinant is
scaled by β̃z−1 and shifted by 1, with effective temperature β̃,
and an extra term. In the continuum case, this is

β̃〈E〉0 = − 1

2
zβ̃ f ′(1) − 1

2

∫ 1

0
dq

×
[
β̃2 f ′′(q)χ̃ (q) + 1

χ̃ (q) + β̃z−1

]
, (11)

where χ̃ is bound by the same constraints as χ .
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The zero temperature limit of the free energy loses one
level of replica symmetry breaking. Physically, this is a result
of the fact that in kRSB, qk gives the overlap within a state,
i.e., within the basin of a well inside the energy landscape. At
zero temperature, the measure is completely localized on the
bottom of the well, and therefore the overlap within each state
becomes one. We will see that the complexity of low-energy
stationary points in Kac–Rice computation is also given by a
(k − 1)RSB anstaz. Heuristically, this is because each station-
ary point also has no width and therefore overlap one with
itself.

IV. LANDSCAPE COMPLEXITY

The stationary points of a function can be counted using
the Kac–Rice formula, which integrates over the function’s
domain a δ function containing the gradient multiplied by the
absolute value of the determinant [44,45]. It gives the number
of stationary points N as

N =
∫

ds dμδ

(
1

2
(‖s‖2 − N )

)
δ(∇H (s, μ))

× | det Hess H (s, μ)|. (12)

It is more interesting to count stationary points which share
certain properties, like energy density E or index density
I. These properties can be fixed by inserting additional δ-
functions into the integral. Rather than fix the index directly,
we fix the trace of the Hessian, which we’ll soon show is
equivalent to fixing the value μ, and fixing μ fixes the index
to within order one. Inserting these δ functions, we arrive at

N (E , μ∗) =
∫

ds dμδ

(
1

2
(‖s‖2 − N )

)
δ(∇H (s, μ))

× | det Hess H (s, μ)|δ(NE − H (s))

× δ(Nμ∗ − Tr Hess H (s, μ)). (13)

This number will typically be exponential in N . To find the
typical count when disorder is averaged, we want to average
its logarithm instead, which is known as the complexity:

�(E , μ∗) = lim
N→∞

1

N
logN (E , μ∗). (14)

If one averages over N and afterward takes its logarithm, then
one arrives at the so-called annealed complexity

�a(E , μ∗) = lim
N→∞

1

N
logN (E , μ∗). (15)

The annealed complexity has been previously computed for
the mixed p-spin models [12]. The annealed complexity is
known to equal the actual (quenched) complexity in circum-
stances where there is at most one level of replica symmetry
breaking in the model’s equilibrium. This is the case for the
pure p-spin models, or for mixed models where 1/

√
f ′′(q) is

a convex function. However, it fails dramatically for models
with higher replica symmetry breaking. For instance, when
f (q) = 1

2 (q2 + 1
16 q4) (a model we study in detail later), the

annealed complexity predicts that minima vanish well be-
fore the dominant saddles, a contradiction for any bounded
function.

A sometimes more illuminating quantity is the Legendre
transform G of the complexity, defined by

eNG(β̂,μ∗ ) =
∫

dE e−β̂E+�(β̂,μ∗ ). (16)

There will be a critical value β̂c beyond which the complexity
is zero: above this value the measure is split between the
lowest O(1) energy states. We shall not study here this regime
that interpolates between the dynamically relevant and the
equilibrium states, but just mention that it is an interesting
object of study.

A. The replicated problem

The replicated Kac–Rice formula was introduced by Ros
et al. [8], and its effective action for the mixed p-spin model
has previously been computed by Folena et al. [46]. Here we
review the derivation.

To average the complexity over disorder, we must deal with
the logarithm. We use the standard replica trick to convert the
logarithm into a product, which gives

logN (E , μ∗) = lim
n→0

∂

∂n
N n(E , μ∗) = lim

n→0

∂

∂n

∫ n∏
a

dsa dμa δ

(
1

2
(‖sa‖2 − N )

)
δ(∇H (sa, μa)) | det Hess H (sa, μa)|

× δ(NE − H (sa))δ(Nμ∗ − Tr Hess H (sa, μa)). (17)

As discussed in Sec. II, it has been shown that to the largest order in N , the Hessian of Gaussian random functions is independent
from their gradient, once both are conditioned on certain properties. Here, they are only related by their shared value of μ.
Because of this statistical independence, we may write

�(E , μ∗) = lim
N→∞

1

N
lim
n→0

∂

∂n

∫ ( n∏
a

dsa dμa

)
n∏
a

δ

(
1

2
(‖sa‖2 − N )

)
δ(∇H (sa, μa))δ(NE − H (sa))

×
n∏
a

| det Hess(sa, μa)| δ(Nμ∗ − Tr Hess H (sa, μa)), (18)
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which simplifies matters. The average of the two factors may
now be treated separately.

1. The Hessian factors

The spectrum of the matrix ∂∂H (s) is uncorrelated from
the gradient. In the large-N limit, for almost every point and
realization of disorder it is a GOE matrix with variance

(∂i∂ jH (s))2 = 1

N
f ′′(1). (19)

Therefore, in that limit its spectrum is given by the Wigner
semicircle with radius

√
4 f ′′(1), or

ρ(λ) =
{

1
2π f ′′(1)

√
4 f ′′(1) − λ2 λ2 � 4 f ′′(1),

0 otherwise.
(20)

The spectrum of the Hessian Hess H (s, μ) is the same semi-
circle shifted by μ, or ρ(λ + μ). The stability parameter μ

thus fixes the center of the spectrum of the Hessian. The
semicircle radius μm = √

4 f ′′(1) is a kind of threshold. When
μ is taken to be within the range ±μm, the critical points have
index density

I (μ) =
∫ ∞

0
dλ ρ(λ + μ) = 1

2
− 1

π

[
arctan

(
μ√

μ2
m − μ2

)
+ μ

μ2
m

√
μ2

m − μ2

]
. (21)

When μ > μm, the critical points are minima whose sloppiest eigenvalue is μ − μm. When μ = μm, the critical points are
marginal minima, with flat directions in their spectrum. This property of μ is why we’ve named it the stability parameter: it
governs the stability of stationary points, and for unstable ones it governs their index.

To largest order in N , the average over the product of determinants factorizes into the product of averages, each of which is
given by the same expression depending only on μ [8]. We therefore find

n∏
a

| det Hess(sa, μa)| δ(Nμ∗ − Tr Hess H (sa, μa)) →
n∏
a

eND(μa )δ(N (μ∗ − μa)), (22)

where the function D is defined by

D(μ) = 1

N
ln | det Hess H (s, μ)| =

∫
dλ ρ(λ + μ) ln |λ|

= Re

{
1

2

[
1 + μ

2 f ′′(1)
(μ −

√
μ2 − 4 f ′′(1))

]
− ln

[
1

2 f ′′(1)
(μ −

√
μ2 − 4 f ′′(1))

]}
. (23)

By fixing the trace of the Hessian, we have effectively fixed the value of the stability μ in all replicas to the value μ∗.
(1) For μ∗ < μm, this amounts to fixing the index density. Since the overwhelming majority of saddles have a semicircle

distribution, the fluctuations are rarer than exponential.
(2) For the gapped case μ∗ > μm, there is an exponentially small probability that r = 1, 2, ... eigenvalues detach from the

semicircle in such a way that the index is in fact NI = r. We shall not discuss these subextensive index fluctuations in this paper,
the interested reader may find what is needed in Ref. [11].

2. The gradient factors

The δ functions in the remaining factor are treated by writing them in the Fourier basis. Introducing auxiliary fields ŝa and β̂

for this purpose, for each replica replica one writes

δ

(
1

2
(‖sa‖2 − N )

)
δ(∇H (sa, μ

∗))δ(NE − H (sa)) =
∫

dμ̂

2π

dβ̂

2π

d ŝa

(2π )N
e

1
2 μ̂(‖sa‖2−N )+β̂(NE−H (sa ))+iŝa·(∂H (sa )+μ∗sa ). (24)

Anticipating a Parisi-style solution, we do not label μ̂ or β̂ with replica indices, since replica vectors will not be broken in
the scheme. The average over disorder can now be taken for the pieces which depend explicitly on the Hamiltonian, and since
everything is Gaussian this gives

exp

[
n∑
a

(iŝa · ∂a − β̂ )H (sa)

]

= exp

[
1

2

n∑
ab

(iŝa · ∂a − β̂ )(iŝb · ∂b − β̂ )H (sa)H (sb)

]
= exp

[
N

2

n∑
ab

(iŝa · ∂a − β̂ )(iŝb · ∂b − β̂ ) f
( sa · sb

N

)]

= exp

{
N

2

n∑
ab

[
β̂2 f

( sa · sb

N

)
− 2iβ̂

ŝa · sb

N
f ′
( sa · sb

N

)
− ŝa · ŝb

N
f ′
( sa · sb

N

)
+
(

i
ŝa · sb

N

)2

f ′′
( sa · sb

N

)]}
. (25)
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We introduce new matrix fields

Cab = 1

N
sa · sb, Rab = −i

1

N
ŝa · sb, Dab = 1

N
ŝa · ŝb. (26)

Their physical meaning is explained in Sec. IX. By substituting these parameters into the expressions above and then making a
change of variables in the integration from sa and ŝa to these three matrices, we arrive at the form for the complexity

�(E , μ∗) = D(μ∗) + β̂E − 1

2
μ̂ + lim

n→0

1

n

×
{

1

2
μ̂ Tr C − μ∗ Tr R + 1

2

∑
ab

[β̂2 f (Cab) + (2β̂Rab − Dab) f ′(Cab) + R2
ab f ′′(Cab)] + 1

2
ln det

[
C iR
iR D

]}
, (27)

where μ̂, β̂, C, R, and D must be evaluated at the extrema of this expression which minimize the complexity. Note that one
cannot minimize the complexity with respect to these parameters: there is no pure variational problem here. Extremizing with
respect to μ̂ is not difficult, and results in setting the diagonal of C to one, fixing the spherical constraint. Maintaining μ̂ in the
complexity is useful for writing down the extremal conditions, but when convenient we will drop the dependence.

The same information is contained but better expressed in the Legendre transform

G(β̂, μ∗) = D(μ∗) + lim
n→0

1

n

{
−μ∗ Tr R + 1

2

∑
ab

[β̂2 f (Cab) + (2β̂Rab − Dab) f ′(Cab) + R2
ab f ′′(Cab)] + 1

2
ln det

[
C iR
iR D

]}
.

(28)

Denoting rd ≡ 1
n TrR, we can write down the double Legendre transform K (β̂, rd ):

eNK (β̂,rd ) =
∫

dE dμ∗eN{�(E ,μ∗ )−β̂E+rd μ∗−D(μ∗ )}, (29)

given by

K (β̂, rd ) = lim
n→0

1

n

{
1

2

∑
ab

[β̂2 f (Cab) + (2β̂Rab − Dab) f ′(Cab) + R2
ab f ′′(Cab)] + 1

2
ln det

[
C iR
iR D

]}
, (30)

where the diagonal of C is fixed to one and the diagonal
of R is fixed to rd . The variable rd is conjugate to μ∗ and
through it to the index density, while β̂ plays the role of an
inverse temperature conjugate to the complexity, that has been
used since the beginning of the spin-glass field. In this way
K (β̂, rd ) contains all the information about saddle densities.

V. REPLICA ANSATZ

Based on previous work on the Sherrington–Kirkpatrick
model and the equilibrium solution of the spherical model,
we expect C, and R and D to be hierarchical matrices in
Parisi’s scheme. This assumption immediately simplifies the
extremal conditions, since hierarchical matrices commute and
are closed under matrix products and Hadamard products. In
particular, the determinant of the block matrix can be written
as a determinant of a product,

ln det

[
C iR
iR D

]
= ln det(CD + R2). (31)

This is straightforward (if strenuous) to write down at kRSB,
since the product and sum of the hierarchical matrices is still
a hierarchical matrix. The algebra of hierarchical matrices
is reviewed in Sec. A. Using the product formula (A3), one
can write down the hierarchical matrix CD + R2, and then
compute the ln det using the formula (A2).

The extremal conditions are given by differentiating the
complexity with respect to its parameters, yielding

0 = ∂�

∂μ̂
= 1

2
(cd − 1), (32)

0 = ∂�

∂β̂
= E + lim

n→0

1

n

∑
ab

[β̂ f (Cab) + Rab f ′(Cab)], (33)

0 = ∂�

∂C
= 1

2
[μ̂I + β̂2 f ′(C) + (2β̂R − D) � f ′′(C)

+ R � R � f ′′′(C) + (CD + R2)−1D], (34)

0 = ∂�

∂R
= −μ∗I + β̂ f ′(C) + R � f ′′(C) + (CD + R2)−1R,

(35)

0 = ∂�

∂D
= −1

2
f ′(C) + 1

2
(CD + R2)−1C, (36)

where � denotes the Hadamard product, or the component-
wise product. Equation (36) implies that

D = f ′(C)−1 − RC−1R. (37)

To these conditions must be added the addition condition that
� is extremal with respect to x1, . . . , xk . There is no better
way to enforce this condition than to directly differentiate �

with respect to the xs, and we have

0 = ∂�

∂xi
1 � i � k. (38)
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The stationary conditions for the xs are the most numerically
taxing.

In addition to these equations, we often want to maximize
the complexity as a function of μ∗, to find the most common
type of stationary points. These are given by the condition

0 = ∂�

∂μ∗ = D′(μ∗) − rd . (39)

Since D(μ∗) is effectively a piecewise function, with different
forms for μ∗ greater or less than μm, there are two regimes.
When μ∗ > μm and the critical points are minima, Eq. (39)
implies

μ∗ = 1

rd
+ rd f ′′(1). (40)

When μ∗ < μm and the critical points are saddles, it implies

μ∗ = 2 f ′′(1)rd . (41)

It is often useful to have the extremal conditions in a form
without matrix inverses, so that the saddle conditions can be
expressed using products alone. By simple manipulations, the
matrix equations can be written as

0 = [β̂2 f ′(C) + (2β̂R − D) � f ′′(C)

+ R � R � f ′′′(C) + μ̂I]C + f ′(C)D, (42)

0 = [β̂ f ′(C) + R � f ′′(C) − μ∗I]C + f ′(C)R, (43)

0 = C − f ′(C)(CD + R2). (44)

The right-hand side of each of these equations is also a hierar-
chical matrix, since products, Hadamard products, and sums
of hierarchical matrices are such.

VI. SUPERSYMMETRIC SOLUTION

The Kac–Rice problem has an approximate supersymme-
try, which is found when the absolute value of the determinant
is neglected and the trace of the Hessian is not fixed. This
supersymmetry has been studied in great detail in the com-
plexity of the Thouless–Anderson–Palmer (TAP) free energy
[47–51]. When the absolute value is dropped, the determinant
in (12) can be represented by an integral over Grassmann vari-
ables, which yields a complexity depending on “bosons” and
“fermions” that share the supersymmetry. The Ward identities
associated with the supersymmetry imply that D = β̂R [47].
Under which conditions can this relationship be expected to
hold? We find that their applicability is limited to a specific
line in the energy and stability plane.

The identity D = β̂R heavily constrains the form that the
rest of the solution can take. Assuming the supersymmetry
holds, Eq. (34) implies

0 = μ̂I + β̂2 f ′(C) + β̂R � f ′′(C)

+ R � R � f ′′′(C) + β̂(CD + R2)−1R. (45)

Substituting (35) for the factor (CD + R2)−1R, we find sub-
stantial cancellation, and finally

0 = (μ̂ + μ∗)I + R � R � f ′′′(C). (46)

If C has a nontrivial off-diagonal structure and supersymmetry
holds, then the off-diagonal of R must vanish, and therefore
R = rd I . Therefore, a supersymmetric ansatz is equivalent to
a diagonal ansatz for both R and D.

Supersymmetry has further implications. Equations (35)
and (36) can be combined to find

I = R[μ∗I − R � f ′′(C)] + (D − β̂R) f ′(C). (47)

Assuming the supersymmetry holds implies that

I = R[μ∗I − R � f ′′(C)]. (48)

Understanding that R is diagonal, we find

μ∗ = 1

rd
+ rd f ′′(1), (49)

which is precisely the condition (40) for dominant minima.
Therefore, the supersymmetric solution counts the most com-
mon minima [49]. When minima are not the most common
type of stationary point, the supersymmetric solution correctly
counts minima that satisfy (40), but these do not have any
other special significance.

Inserting the supersymmetric ansatz D = β̂R and R = rd I ,
one gets for the complexity

�(E , μ∗) =D(μ∗) + β̂E − μ∗rd + 1

2
β̂rd f ′(1)

+ 1

2
r2

d f ′′(1) + 1

2
ln r2

d + 1

2
lim
n→0

1

n

×
[
β̂2
∑

ab

f (Cab) + ln det((β̂/rd )C + I )

]
.

(50)

From here, it is straightforward to see that the complexity
vanishes at the ground-state energy. First, in the ground-state
minima will dominate (even if they are marginal), so we may
assume Eq. (40). Then, taking �(E0, μ

∗) = 0, gives

β̂E0 = − 1

2
rd β̂ f ′(1) − 1

2
lim
n→0

1

n

×
[
β̂2

n∑
ab

f (Cab) + ln det
(
β̂r−1

d C + I
)]

, (51)

which is precisely the ground-state energy predicted by the
equilibrium solution (10) with rd = z, β̂ = β̃, and C = Q̃.

Therefore, a (k − 1)RSB ansatz in Kac–Rice will predict
the correct ground-state energy for a model whose equilib-
rium state at small temperatures is kRSB Moreover, there
is an exact correspondence between the saddle parameters
of each. If the equilibrium is given by a Parisi matrix with
parameters x1, . . . , xk and q1, . . . , qk , then the parameters β̂,
rd , dd , x̃1, . . . , x̃k−1, and c1, . . . , ck−1 for the complexity in the
ground state are

β̂ = lim
β→∞

βxk, x̃i = lim
β→∞

xi

xk
, ci = lim

β→∞
qi,

rd = lim
β→∞

β(1 − qk ), dd = β̂rd . (52)

Unlike the case for the TAP complexity, this correspondence
between landscape complexity and equilibrium solutions only
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exists at the ground state. We will see in our examples in
Sec. VIII that there appears to be little correspondence be-
tween these parameters away from the ground state.

The supersymmetric solution produces the correct com-
plexity for the ground state and for a class of minima,
including dominant ones. Moreover, it produces the correct
parameters for the fields C, R, and D at those points. This
is an important foothold in the problem of computing the
general complexity. The full saddle point equations at kRSB
are not very numerically stable, and a “good” saddle point
has a typically small radius of convergence under methods
like Newton’s algorithm. With the supersymmetric solution
in hand, it is possible to take small steps in the parameter
space to find nonsupersymmetric numeric solutions, each time
ensuring the initial conditions for the solver are sufficiently
close to the correct answer. This is the strategy we use in
Sec. VIII.

VII. FULL REPLICA SYMMETRY BREAKING

This reasoning applies equally well to FRSB systems. In
the end, when the limit of n → 0 is taken, each matrix field
can be represented in the canonical way by its diagonal and a
continuous function on the domain [0,1] which parameterizes
each of its rows, with

C ↔ [cd , c(x)], R ↔ [rd , r(x)], D ↔ [dd , d (x)].

(53)

The algebra of hierarchical matrices under this continuous
parametrization is reviewed in Sec. A. With these substitu-
tions, the complexity becomes

�(E , μ∗) =D(μ∗) + β̂E − μ∗rd + 1

2

[
β̂2 f (1)

+ (2β̂rd − dd ) f ′(1) + r2
d f ′′(1)

]
− 1

2

∫ 1

0
dx[β̂2 f (c(x)) + (2β̂r(x) − d (x)) f ′(c(x))

+ r(x)2 f ′′(c(x))] + 1

2
lim
n→0

1

n
ln det(CD + R2).

(54)

The formula for the determinant is complicated and can be
found by using the product formula (A6) to write CD and R2,
summing them, and finally using the ln det formula (A9). The
saddle point equations take the form

0 = μ̂c(x) + [(β̂2( f ′ ◦ c) + (2β̂r − d )( f ′′ ◦ c)

+ r2( f ′′′ ◦ c)) ∗ c](x) + [( f ′ ◦ c) ∗ d](x), (55)

0 = −μ∗c(x) + [(β̂( f ′ ◦ c) + r ∗ ( f ′′ ◦ c)) ∗ c](x)

+ [( f ′ ◦ c) ∗ r](x), (56)

0 = c(x) − [( f ′ ◦ c) ∗ (c ∗ d + r ∗ r)](x), (57)

where (ab)(x) = a(x)b(x) denotes the hadamard product, (a ∗
b)(x) denotes the functional parametrization of the diagonal of
the product of hierarchical matrices AB defined in Eq. (A6),
and (a ◦ b)(x) = a[b(x)] denotes composition.

A. Supersymmetric complexity

Using standard manipulations, one finds also a continuous
version of the supersymmetric complexity

�(E , μ∗) =D(μ∗) + β̂E − μ∗rd

+ 1

2

[
β̂rd f ′(1) + r2

d f ′′(1) + ln r2
d

]
+ 1

2

∫ 1

0
dq

[
β̂2 f ′′(q)χ (q) + 1

χ (q) + rd/β̂

]
,

(58)

where χ (q) = ∫ q
1 dq′ ∫ q′

0 dq′′ P(q) for P(q) the distribution
of elements in a row of C, as in the equilibrium case. Like
in the equilibrium case, χ must be concave, monotonically
decreasing, and have χ (1) = 0, χ ′(1) = −1.

First, we use this solution to inspect the ground state of
a full RSB system. We know from the equilibrium that in
the ground state χ is continuous in the whole range of q.
Therefore, the saddle solution found by extremizing

0 = δ�

δχ (q)
= 1

2
β̂2 f ′′(q) − 1

2

1

[χ (q) + rd/β̂]2
(59)

over all functions χ . This gives

χ0(q | β̂, rd ) = 1

β̂
[ f ′′(q)−1/2 − rd ]. (60)

Satisfying the boundary conditions requires rd = f ′′(1)−1/2

and β̂ = 1
2 f ′′′(1)/ f ′′(1)3/2. This in turn implies μ∗ = 1

rd
+

f ′′(1)rd = √
4 f ′′(1) = μm. Therefore, the FRSB ground state

is always marginal, as excepted. It is straightforward to check
that these conditions are indeed a saddle of the complexity.
This has several implications. First, other than the ground
state, there are no energies at which minima are most numer-
ous; saddles always dominate. As we will see, stable minima
are numerous at energies above the ground state, but these
vanish at the ground state.

Away from the ground state, this expression still correctly
counts a class of nondominant minima. However, like in the
equilibrium solution, the function χ which produces an ex-
tremal value is not smooth in the entire range [0,1], but adopts
a piecewise form

χ (q) =
{

χ0(q | β̂, rd ) q � qmax,

1 − q otherwise.
(61)

With this ansatz, the complexity must be extremized with
respect to rd and β̂, while simultaneously ensuring that qmax

is such that χ (q) is continuous, that is, that χ0(qmax | β̂, rd ) =
1 − qmax. The significance of the minima counted by this
method is unclear, but they do represent a nodal line in the
off-diagonal parts of R and D. Since, as usual, χ (q) is related
to c(x) by −χ ′(c(x)) = x, there is a corresponding xmax given
by

xmax = −χ ′(qmax) = 1

2β̂

f ′′′(qmax)

f ′′(qmax)3/2
. (62)
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B. Expansion near the transition

Working with the continuum equations away from the su-
persymmetric solution is not generally tractable. However,
there is another point where they can be treated analytically:
near the onset of replica symmetry breaking. Here, the off-
diagonal components of C, R, and D are expected to be small.
In particular, we expect the functions c(x), r(x), and d (x)
to approach zero at the transition, and moreover take the
piecewise linear form

c(x) =
{

c̄x x � xmax

c̄xmax otherwise
, r(x) =

{
r̄x x � xmax

r̄xmax otherwise
,

d (x) =
{

d̄x x � xmax

d̄xmax otherwise
, (63)

with xmax vanishing at the transition, with the slopes c̄, r̄,
and d̄ remaining nonzero. This ansatz is informed both by
the experience of the equilibrium solution, and by empirical
observation within the numerics of Sec. VIII

Given this ansatz, we take Eqs. (55)–(57), which are true
for any x, and integrate them over x. We then expand the result

about small xmax to linear order in xmax. Equation (56) depends
linearly on r̄ to all orders, and therefore r̄ can be found in
terms of c̄, yielding

r̄

c̄
= − β̂ − 1

f ′(1) + f ′′(0)
{rd [ f ′′(0) + f ′′(1)]

− μ∗} + O(xmax). (64)

Likewise, Eq. (57) depends linearly on d̄ to all orders and can
be solved to give

d̄

c̄
= − 2rd

r̄

c̄
− 1

f ′(1)

{
r2

d f ′′(0) + dd [ f ′(1)

+ f ′′(0)] − 1
}+ O(xmax). (65)

The equations cannot be used to find the value of c̄ without
going to higher order in xmax, but the transition line can be
determined by examining the stability of the replica sym-
metric complexity. First, we expand the full form for the
complexity about small xmax in the same way as we expand the
extremal conditions, using Eq. (A9) to treat the determinant.
To quadratic order, this gives

�(E , μ∗) =D(μ∗) + β̂E − μrd + 1

2

[
β̂2 f (1) + (2β̂rd − dd ) f ′(1) + r2

d f ′′(1)
]+ 1

2
ln
(
dd + r2

d

)

− 1

2

[
1

2
β̂2c̄2 f ′′(0) + (2β̂ r̄ − d̄ )c̄ f ′′(0) + r̄2 f ′′(0) − d̄2 − 2dd r̄2 + d2

d c̄2 + 4rd r̄(d̄ + dd c̄) − 2r2
d (c̄d̄ + r̄2)

2
(
dd + r2

d

)2
]

x2
max.

(66)

The spectrum of the Hessian of � with evaluated at the RS solution gives its stability with respect to these functional
perturbations. When the values of r̄ and d̄ above are substituted into the Hessian and β̂, rd , and dd are evaluated at their RS
values, the eigenvalue of interest takes the form

λ = −c̄2 ( f ′(1) − 2 f (1))2( f ′(1) − f ′′(0)) f ′′(0)

2( f ′(1) + f ′′(0))( f ′(1)2 − f (1)( f ′(1) + f ′′(1)))2
(μ∗ − μ∗

+(E ))(μ∗ − μ∗
−(E )), (67)

where

μ∗
±(E ) = ± ( f ′(1) + f ′′(0))( f ′(1)2 − f (1)( f ′(1) + f ′′(1)))

(2 f (1) − f ′(1)) f ′(1) f ′′(0)−1/2
− f ′′(1) − f ′(1)

f ′(1) − 2 f (1)
E . (68)

This eigenvalue changes sign when μ∗ crosses μ∗
±(E ). We

expect that this is the line of stability for the replica symmetric
solution when the transition is RS-FRSB. The numerics in
Sec. VIII bear this out.

VIII. GENERAL SOLUTION: EXAMPLES

Though we have only written down an easily computable
complexity along a specific (and often uninteresting) line in
energy and stability, this computable (supersymmetric) solu-
tion gives a numeric foothold for computing the complexity in
the rest of that space. First, Eq. (11) is maximized with respect
to its parameters, since the equilibrium solution is equivalent
to a variational problem. Second, the mapping (52) is used
to find the corresponding Kac–Rice saddle parameters in the
ground state. With these parameters in hand, small steps are
then made in energy E or stability μ, after which known these
values are used as the initial condition for a saddle-finding

problem. In this section, we use this basic numeric idea to
map out the complexity for two representative examples: a
model with a 2RSB equilibrium ground state and therefore
1RSB complexity in its vicinity, and a model with a FRSB
equilibrium ground state, and therefore FRSB complexity as
well.

A. 1RSB complexity

It is known that by choosing a covariance f as the sum of
polynomials with well-separated powers, one develops 2RSB
in equilibrium. This should correspond to 1RSB in Kac–Rice.
For this example, we take

f (q) = 1
2

(
q3 + 1

16 q16) (69)

established to have a 2RSB ground state [52]. With this
covariance, the model sees a replica symmetric to 1RSB tran-
sition at β1 = 1.70615 . . . and a 1RSB to 2RSB transition
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FIG. 1. Complexity of dominant saddles, marginal minima, and dominant minima of the 3 + 16 model. Solid lines show the result of the
1RSB ansatz, while the dashed lines show that of a RS ansatz. The complexity of marginal minima is always below that of dominant critical
points except at the black dot, where they are dominant. The inset shows a region around the ground state and the fate of the RS solution.

at β2 = 6.02198 . . .. At these transitions, the average ener-
gies in equilibrium are 〈E〉1 = −0.906391 . . . and 〈E〉2 =
−1.19553 . . ., respectively, and the ground-state energy is
E0 = −1.287 605 530 . . .. Besides these typical equilibrium
energies, an energy of special interest for looking at the land-
scape topology is the algorithmic thresholdEalg, defined by the
lowest energy reached by local algorithms like approximate
message passing [53,54]. In the spherical models, this has
been proven to be

Ealg = −
∫ 1

0
dq
√

f ′′(q). (70)

For full RSB systems, Ealg = E0 and the algorithm can reach
the ground-state energy. For the pure p-spin models, Ealg =
Eth, where Eth is the energy at which marginal minima are
the most common stationary points. Something about the
topology of the energy function might be relevant to where
this algorithmic threshold lies. For the 3 + 16 model at hand,
Ealg = −1.275 140 128 . . ..

In this model, the RS complexity gives an inconsistent
answer for the complexity of the ground state, predict-
ing that the complexity of minima vanishes at a higher
energy than the complexity of saddles, with both at a
lower energy than the equilibrium ground state. The 1RSB
complexity resolves these problems, predicting the same
ground state as equilibrium and with a ground-state stabil-
ity μ0 = 6.480 764 . . . > μm. It predicts that the complexity
of marginal minima (and therefore all saddles) vanishes at
Em = −1.287 605 527 . . ., which is very slightly greater than
E0. Saddles become dominant over minima at a higher energy
Eth = −1.287 575 114 . . .. The 1RSB complexity transitions
to a RS description for dominant stationary points at an energy
E1 = −1.273 886 852 . . .. The highest energy for which the
1RSB description exists is Emax = −0.886 029 051 . . .

The complexity as a function of energy difference from the
ground state is plotted in Fig. 1. In that figure, the complexity
is plotted for dominant minima and saddles, marginal minima,

and supersymmetric minima. A contour plot of the complexity
as a function of energy E and stability μ is shown in Fig. 2.
That plot also shows the RS–1RSB transition line in the com-
plexity. For minima, the complexity does not inherit a 1RSB
description until the energy is with in a close vicinity of the
ground state. However, for high-index saddles the complexity
becomes described by 1RSB at quite high energies. This sug-
gests that when sampling a landscape at high energies, high
index saddles may show a sign of replica symmetry breaking
when minima or inherent states do not.

Figure 3 shows a different detail of the complexity in the
vicinity of the ground state, now as functions of the energy dif-
ference and stability difference from the ground state. Several
of the landmark energies described above are plotted, along-
side the boundaries between the “phases.” Though Ealg looks
quite close to the energy at which dominant saddles transition
from 1RSB to RS, they differ by roughly 10−3, as evidenced
by the numbers cited above. Likewise, though 〈E〉1 looks
very close to Emax, where the 1RSB transition line terminates,
they too differ. The fact that Ealg is very slightly below the
place where most saddle transition to 1RSB is suggestive; we
speculate that an analysis of the typical minima connected to
these saddles by downward trajectories will coincide with the
algorithmic limit. An analysis of the typical nearby minima
or the typical downward trajectories from these saddles at
1RSB is warranted [8,55]. Also notable is that Ealg is at a
significantly higher energy than Eth; according to the theory,
optimal smooth algorithms in this model stall in a place where
minima are exponentially subdominant.

Figure 4 shows the saddle parameters for the 3 + 16 system
for notable species of stationary points, notably the most com-
mon, the marginal ones, those with zero complexity, and those
on the transition line. When possible, these are compared
with the same expressions in the equilibrium solution at the
same average energy. Besides the agreement at the ground-
state energy, there seems to be little correlation between the
equilibrium and complexity parameters.
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FIG. 2. Complexity of the 3 + 16 model in the energy E and stability μ∗ plane. The right shows a detail of the left. Below the horizontal
marginal line the complexity counts saddles of increasing index as μ∗ decreases. Above the horizontal marginal line the complexity counts
minima of increasing stability as μ∗ increases.

Of specific note is what happens to d1 as the 1RSB phase
boundary for the complexity meets the zero complexity line.
Here, d1 diverges like

d1 = −
(

1

f ′(1)
− (dd + r2

d

))
(1 − x1)−1 + O(1), (71)

while x1 and q1 both go to one. Note that this is the only
place along the phase boundary where q1 goes to one. The
significance of this critical point in the complexity of high-
index saddles in worth further study.

B. Full RSB complexity

If the covariance f is chosen to be concave, then one
develops FRSB in equilibrium. To this purpose, we choose

f (q) = 1
2

(
q2 + 1

16 q4
)
, (72)

also studied before in equilibrium [41,42]. Because the ground
state is FRSB, for this model

E0 = Ealg = Eth = −
∫ 1

0
dq
√

f ′′(q) = −1.059 384 319 . . . .

(73)

FIG. 3. Detail of the “phases” of the 3 + 16 model complexity as a function of energy and stability. Above the horizontal marginal stability
line the complexity counts saddles of fixed index, while below that line it counts minima of fixed stability. The shaded red region to the left
of the transition line shows places where the complexity is described by the 1RSB solution, while the shaded gray region to the right of the
transition line shows places where the complexity is described by the RS solution. In white regions the complexity is zero. Several interesting
energies are marked with vertical black lines: the traditional “threshold” Eth where minima become most numerous, the algorithmic threshold
Ealg that bounds the performance of smooth algorithms, and the average energies at the 2RSB and 1RSB equilibrium transitions 〈E〉2 and 〈E〉1,
respectively. Though the figure is suggestive, Ealg lies at slightly lower energy than the termination of the RS–1RSB transition line.
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FIG. 4. Comparison of the saddle point parameters for the 3 + 16 model along different trajectories in the energy and stability space, and
with the equilibrium values (when they exist) at the same value of average energy 〈E〉.

In the equilibrium solution, the transition temperature from
RS to FRSB is β∞ = 1, with corresponding average energy
〈E〉∞ = −0.53125 . . ..

Along the supersymmetric line, the FRSB solution can
be found in full, exact functional form. To treat the FRSB
away from this line numerically, we resort to finite kRSB
approximations. Since we are not trying to find the actual
kRSB solution, but approximate the FRSB one, we drop the
extremal condition (38) for x1, . . . , xk and instead set

xi =
(

i

k + 1

)
xmax (74)

and extremize over xmax alone. This dramatically simplifies
the equations that must be solved to find solutions. In the
results that follow, a 20RSB approximation is used to trace
the dominant saddles and marginal minima, while a 5RSB
approximation is used to trace the (much longer) boundaries
of the complexity.

Figure 5 shows the complexity for this model as a function
of energy difference from the ground state for several notable
trajectories in the energy and stability plane. Figure 6 shows
these trajectories, along with the phase boundaries of the com-
plexity in this plane. Notably, the phase boundary predicted
by Eq. (68) correctly predicts where all of the finite kRSB
approximations terminate. Like the 1RSB model in the previ-
ous subsection, this phase boundary is oriented such that very
few, low energy, minima are described by a FRSB solution,
while relatively high-energy saddles of high index are also.
Again, this suggests that studying the mutual distribution of
high-index saddle points might give insight into lower-energy
symmetry breaking in more general contexts.

Figure 7 shows the value of xmax along several trajectories
of interest. Everywhere along the transition line, xmax continu-

ously goes to zero. Examples of our 20RSB approximations of
the continuous functions c(x), r(x), and d (x) are also shown.
As expected, these functions approach linear ones as xmax goes
to zero with finite slopes.

IX. INTERPRETATION

Let 〈A〉 be the average of any function A over stationary
points with given E and μ∗, i.e.,

〈A〉 = 1

N
∑
s∈S

A(s) = 1

N

∫
dν(s) A(s), (75)

with

dν(s) = ds dμδ

(
1

2
(‖s‖2 − N )

)
δ(∇H (s, μ)) | det Hess H

× (s, μ)|δ(NE − H (s))δ(Nμ∗ − Tr Hess H (s, μ))

(76)

the Kac–Rice measure. Note that this definition of the angle
brackets, which is in analogy with the typical equilibrium av-
erage, is not the same as that used in Sec. VII B for averaging
over the off-diagonal elements of a hierarchical matrix. The
fields C, R, and D defined in (26) can be related to certain
averages of this type.

A. C: Distribution of overlaps

First consider C, which has an interpretation nearly identi-
cal to that of Parisi’s Q matrix of overlaps in the equilibrium
case. Its off-diagonal corresponds to the probability distribu-
tion P(q) of the overlaps q = (s1 · s2)/N between stationary
points. Let S be the set of all stationary points with given
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FIG. 5. The complexity � of the mixed 2 + 4 spin model as a function of distance �E = E − E0 of the ground state. The solid blue line
shows the complexity of dominant saddles given by the FRSB ansatz, and the solid yellow line shows the complexity of marginal minima. The
dashed lines show the same for the annealed complexity. The inset shows more detail around the ground state.

energy density and index. Then

P(q) ≡ 1

N 2

∑
s1∈S

∑
s2∈S

δ
( s1 · s2

N
− q
)
. (77)

This is the probability that two stationary points uniformly
drawn from the ensemble of all stationary points with fixed E
and μ∗ happen to be at overlap q. Though these are evaluated
for a given energy, index, etc, we shall omit these subindices
for simplicity.

FIG. 6. “Phases” of the complexity for the 2 + 4 model in the energy E and stability μ∗ plane. The region shaded gray to the right of the
transition line shows where the RS solution is correct, while the region shaded red to the left of the transition line shows that where the FRSB
solution is correct. The white region shows where the complexity is zero.
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FIG. 7. xmax as a function of E for several trajectories of interest, along with examples of the 20RSB approximations of the functions c(x),
r(x), and d (x) along the dominant saddles. Colors of the approximate functions correspond to the points on the xmax plot. The supersymmetric
line terminates where the complexity reaches zero, which happens inside the FRSB phase.

The moments of this distribution q(p) are given by

q(p) ≡
∫ 1

0
dq qpP(q) = 1

N p

∑
i1···ip

〈
si1 · · · sip

〉〈
si1 · · · sip

〉 = 1

N p

1

N 2

⎧⎨
⎩
∑
s1,s2

∑
i1···ip

s1
i1 · · · s1

ip
s2

i1 · · · s2
ip

⎫⎬
⎭

= 1

N 2

⎧⎨
⎩
∑
s1,s2

( s1 · s2

N

)p

⎫⎬
⎭ = lim

n→0

⎧⎨
⎩
∑

s1,s2,...,sn

( s1 · s2

N

)p

⎫⎬
⎭. (78)

The (n − 2) extra replicas provide the normalization, with limn→0 N n−2 = N−2. Replacing the sums over stationary points with
integrals over the Kac–Rice measure, the average over disorder (again, for fixed energy and index) gives

q(p) = 1

N p

∑
i1···ip

〈
si1 · · · sip

〉〈
si1 · · · sip

〉 = lim
n→0

∫ n∏
a

dν(sa)
( s1 · s2

N

)p

= lim
n→0

∫
D[C, R, D] (C12)p enN�[C,R,D] = lim

n→0

∫
D[C, R, D]

1

n(n − 1)

∑
a �=b

(Cab)p enN�[C,R,D]. (79)

In the last line, we have used that there is nothing special about replicas one and two. Using the Parisi ansatz, evaluating by
saddle point summing over all the n(n − 1) saddles related by permutation we then have

q(p) =
∫ 1

0
dx cp(x) =

∫ 1

0
dq qpP(q), concluding P(q) = dx

dq
=
(

dc

dx

)−1∣∣∣∣
c(x)=q

. (80)
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FIG. 8. A cartoon visualizing how to interpret replica symmetry breaking solutions in the complexity. The black region show schematically
areas where stationary points of a given energy can be found. Left: When the region is connected, pairs of stationary points exist at any overlap,
but the vast majority of pairs are orthogonal. Center: When there are exponentially many disconnected regions of similar size, the vast majority
of pairs will be found in different, orthogonal regions. Right: When there are a few large disconnected regions, pairs have a comparable
probability to be found in different regions or in the same region. This gives rise to two (or more) possible overlaps.

The appeal of Parisi to properties of pure states is unnecessary
here, since the stationary points are points.

With this established, we now address what it means for
C to have a nontrivial replica-symmetry broken structure.
When C is replica symmetric, drawing two stationary points
at random will always lead to the same overlap. In the case
when there is no linear field and q0 = 0, they will always have
overlap zero, because the second point will almost certainly
lie on the equator of the sphere with respect to the first.
Though other stationary points exist nearby the first one, they
are exponentially fewer and so will be picked with vanishing
probability in the thermodynamic limit.

When C is replica-symmetry broken, there is a nonzero
probability of picking a second stationary point at some other
overlap. This can be interpreted by imagining the level sets of
the Hamiltonian in this scenario. If the level sets are discon-
nected but there are exponentially many of them distributed
on the sphere, then one will still find zero average overlap.
However, if the disconnected level sets are few, i.e., less than
order N , then it is possible to draw two stationary points
from the same set with nonzero probability. Therefore, the
picture in this case is of few, large basins each containing
exponentially many stationary points. A cartoon of this picture
is shown in Fig. 8.

1. A tractable example

One can construct a schematic 2RSB model from two
1RSB models. Consider two independent pure models of size
N and with p1-spin and p2-spin couplings, respectively, with
energies Hp1 (s) and Hp2 (σ), and couple them weakly with
ε σ · s. The landscape of the pure models is much simpler
than that of the mixed because, in these models, fixing the
stability μ is equivalent to fixing the energy: μ = pE . This
implies that at each energy level there is only one type of
stationary point. Therefore, for the pure models our formulas
for the complexity and its Legendre transforms are functions
of one variable only, E , and each instance of μ∗ inside must
be replaced with pE .

In the joint model, we wish to fix the total energy, not the
energies of the individual two models. Therefore, we insert

a δ function containing (E1 + E2) − E and integrate over E1

and E2. This results in a joint complexity (and Legendre
transform)

eN�(E ) =
∫

dE1 dE2 dλ exp{N[�1(E1) + �2(E2)

+ O(ε) − λ((E1 + E2) − E )]}, (81)

eNG(β̂ ) =
∫

dE dE1 dE2 dλ exp{N[−β̂E + �1(E1)

+ �2(E2) + O(ε) − λ((E1 + E2) − E )]}. (82)

The saddle point is given by �′
1(E1) = �′

2(E2) = β̂, provided
that both �1(E1) and �2(E2) are nonzero. In this situation,
two systems are “thermalized,” and, because many points
contribute, the overlap between two global configurations is
zero:

1

2N
〈(s1, σ1) · (s2, σ2)〉 = 1

2N
[〈s1 · s2〉 + 〈σ1 · σ2〉] = 0.

(83)

This is the “annealed” phase of a Kac-Rice calculation.
Now start going down in energy, or up in β̂: there will be

a point Ec or β̂c at which one of the subsystems (say it is
system one) freezes at its lowest energy density, while system
two is not yet frozen. At this point, �1(E1) = 0 and E1 is the
ground-state energy. At an even higher value β̂ = β̂ f , both
systems will become frozen in their ground states. For β̂ f >

β̂ > β̂c one system is unfrozen, while the other is, because
of coupling, frozen at inverse temperature β̂c. The overlap
between two solutions in this intermediate phase is

1

2N
〈(s1, σ1) · (s2, σ2)〉 = 1

2N
[〈s1 · s2〉 + 〈σ1 · σ2〉]

= 1

2N
〈s1 · s2〉 > 0, (84)

which is nonzero because there are only a few low-energy
stationary points in system one, and there is a nonvanishing
probability of selecting one of them twice. The distribution
of this overlap is one-half the overlap distribution of a frozen
spin-glass at temperature β̂, a 1RSB system like the random
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energy model. The value of x corresponding to it depends on
β̂, starting at x = 1 at β̂c and decreasing with increasing β̂.
Globally, the joint complexity of the system is 1RSB, but note
that the global overlap between different states is at most 1/2.
At β̂ > β̂ f there is a further transition.

This schematic example provides a metaphor for consider-
ing what happens in ordinary models when replica symmetry
is broken. At some point certain degrees of freedom “freeze”
onto a subextensive number of possible states, while the re-
mainder are effectively unconstrained. The overlap measures
something in the competition between the number of these
unconstrained subregions and their size.

B. R and D: Response functions

The matrix field R is related to responses of the stationary
points to perturbations of the tensors J . One adds to the Hamil-
tonian a random term εpH̃p = − 1

p!εp
∑

i1···ip
J̃i1···ipsi1 · · · sip ,

where the J̃ are random Gaussian uncorrelated with the Js
and having variance J̃2 = p!/2N p−1. The response to these is

1

N

∂〈H̃p〉
∂εp

= lim
n→0

∫ ( n∏
a

dν(sa)

)
n∑
b

×
[
β̂
( s1 · sb

N

)p
+ p

(
−i

s1 · ŝb

N

)( s1 · sb

N

)p−1
]
.

(85)

Taking the average of this expression over disorder and aver-
aging over the equivalent replicas in the integral gives, similar
to before,

1

N

∂〈H̃p〉
∂εp

= lim
n→0

∫
D[C, R, D]

1

n

n∑
ab

× (β̂Cp
ab + pRabC

p−1
ab

)
enN�[C,R,D]

= β̂ + prd −
∫ 1

0
dx cp−1(x)[β̂c(x) + pr(x)]. (86)

The responses as defined by this average perturbation in the
pure p-spin energy can be directly related to responses in the
tensor polarization of the stationary points:

1

N p

∑
i1···ip

∂
〈
si1 · · · sip

〉
∂J (p)

i1···ip

= 1

N

∂〈H̃p〉
∂εp

. (87)

In particular, when the energy is unconstrained (β̂ = 0) and
there is replica symmetry, the above formulas imply that

1

N

∑
i

∂〈si〉
∂J (1)

i

= rd , (88)

i.e., adding a linear field causes a response in the average
stationary point location proportional to rd . If positive, for
instance, then stationary points tend to align with a field.
The energy constraint has a significant contribution due to the
perturbation causing stationary points to move up or down in
energy.

The matrix field D is related to the response of the com-
plexity to perturbations of the variance of the tensors J . This
can be found by taking the expression for the complexity and

inserting the dependence of f on the coefficients ap, then
differentiating:

∂�

∂ap
= 1

4
lim
n→0

1

n

n∑
ab

[
β̂2Cp

ab + p(2β̂Rab − Dab)Cp−1
ab

+ p(p − 1)R2
abC

p−2
ab

]
. (89)

In particular, when the energy is unconstrained (β̂ = 0) and
there is no replica symmetry breaking,

∂�

∂a1
= −1

4
lim
n→0

1

n

∑
ab

Dab = −1

4
dd , (90)

i.e., adding a random linear field decreases the complexity of
solutions by an amount proportional to dd in the variance of
the field.

When the saddle point of the Kac–Rice problem is super-
symmetric,

∂�

∂ap
= β̂

4

1

N p

∑
i1···ip

∂
〈
si1 · · · sip

〉
∂J (p)

i1···ip

+ lim
n→0

1

n

n∑
ab

p(p − 1)R2
abC

p−2
ab ,

(91)

and in particular for p = 1,

∂�

∂a1
= β̂

4

1

N

∑
i

∂〈si〉
∂J (1)

i

, (92)

i.e., the change in complexity due to a linear field is directly
related to the resulting magnetization of the stationary points
for supersymmetric minima.

X. CONCLUSION

We have constructed a replica solution for the general
problem of finding saddles of random mean-field landscapes,
including systems with many steps of RSB. For systems with
full RSB, we find that minima are exponentially subdominant
with respect to saddles at all energy densities above the ground
state. The solution should be subjected to standard checks,
like the examination of its stability with respect to other RSB
schemes. The solution contains valuable geometric informa-
tion that has yet to be extracted in all detail, for example,
considering several copies of the system [56], or the extension
to complex variables [57,58].

A first and very important application of the method here
is to perform the calculation for high dimensional spheres,
where it would give us a clear understanding of what happens
in realistic low-temperature jamming dynamics [59]. More
simply, examining the landscape of a spherical model with
a glass to glass transition from 1RSB to RS, like the 2 + 4
model when a4 is larger than we have taken it in our exam-
ple, might give insight into the cases of interest for Gardner
physics [41,42]. In any case, our analysis of typical 1RSB and
FRSB landscapes indicates that the highest energy signature
of RSB phases is in the overlap structure of the high-index
saddle points. Though measuring the statistics of saddle points
is difficult to imagine for experiments, this insight could find
application in simulations of glass formers, where saddle-
finding methods are possible.
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A second application is to evaluate in more detail the
landscape of these RSB systems. In particular, examining
the complexity of stationary points with nonextensive indices
(like rank-one saddles), the complexity of pairs of stationary
points at fixed overlap, or the complexity of energy barriers
[10,60]. These other properties of the landscape might shed
light on the relationship between landscape RSB and dynami-
cal features, like the algorithmic energy Ealg, or the asymptotic
level reached by physical dynamics. For our 1RSB example,
because Ealg is just below the energy where dominant saddles

transition to a RSB complexity, we speculate that Ealg may be
related to the statistics of minima connected to the saddles at
this transition point.
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APPENDIX: HIERARCHICAL MATRIX DICTIONARY

Each row of a hierarchical matrix is the same up to permutation of their elements. The so-called kRSB ansatz has k + 2
different values in each row. If A is an n × n hierarchical matrix, then n − x1 of those entries are a0, x1 − x2 of those entries
are a1, and so on until xk − 1 entries of ak , and one entry of ad , corresponding to the diagonal. Given such a matrix, there are
standard ways of producing the sum and determinant that appear in the free energy. These formulas are, for an arbitrary kRSB
matrix A with ad on its diagonal (recall qd = 1),

lim
n→0

1

n

n∑
ab

Aab = ad −
k∑

i=0

(xi+1 − xi )ai, (A1)

lim
n→0

1

n
ln det A = a0

ad −∑k
i=0(xi+1 − xi )ai

+ 1

x1
log

[
ad −

k∑
i=0

(xi+1 − xi )ai

]

−
k∑

j=1

(
x−1

j − x−1
j+1

)
log

⎡
⎣ad −

k∑
i= j

(xi+1 − xi )ai − x ja j

⎤
⎦, (A2)

where x0 = 0 and xk+1 = 1. The sum of two hierarchical matrices results in the sum of each of their elements: (a + b)d = ad + bd

and (a + b)i = ai + bi. The product AB of two hierarchical matrices A and B is given by

(a ∗ b)d = ad bd −
k∑

j=0

(x j+1 − x j )a jb j, (A3)

(a ∗ b)i = bd ai + ad bi −
i−1∑
j=0

(x j+1 − x j )a jb j + (2xi+1 − xi )aibi −
k∑

j=i+1

(x j+1 − x j )(aib j + a jbi ). (A4)

There is a canonical mapping between the parametrization of a hierarchical matrix described above and a functional
parametrization that is particularly convenient in the twin limit n → 0 and k → ∞ [61,62]. The distribution of diagonal elements
of a matrix A is parameterized by a continuous function a(x) on the interval [0,1], while its diagonal is still called ad . Define for
any function g the average

〈g〉 =
∫ 1

0
dx g(x). (A5)

The sum of two hierarchical matrices so parameterized results in the sum of these functions. The product AB of hierarchical
matrices A and B gives

(a ∗ b)d = ad bd − 〈ab〉, (A6)

(a ∗ b)(x) = (bd − 〈b〉)a(x) + (ad − 〈a〉)b(x) −
∫ x

0
dy [a(x) − a(y)][b(x) − b(y)]. (A7)

The sum over all elements of a hierarchical matrix A gives

lim
n→0

1

n

∑
ab

Aab = ad − 〈a〉. (A8)
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The ln det = Tr ln becomes

lim
n→0

1

n
ln det A = ln(ad − 〈a〉) + a(0)

ad − 〈a〉 −
∫ 1

0

dx

x2
ln

(
ad − 〈a〉 − xa(x) + ∫ x

0 dy a(y)

ad − 〈a〉

)
. (A9)
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