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Abstract
In this paper we follow up the study of ‘complex complex landscapes’
(Kent-Dobias and Kurchan 2021 Phys. Rev. Res. 3 023064), rugged land-
scapes of many complex variables. Unlike real landscapes, the classification
of saddles by index is trivial. Instead, the spectrum of fluctuations at station-
ary points determines their topological stability under analytic continuation
of the theory. Topological changes, which occur at so-called Stokes points,
proliferate among saddles with marginal (flat) directions and are suppressed
otherwise. This gives a direct interpretation of the gap or ‘threshold’ energy—
which in the real case separates saddles from minima—as the level where the
spectrum of the hessian matrix of stationary points develops a gap. This leads
to different consequences for the analytic continuation of real landscapes with
different structures: the global minima of ‘one step replica-symmetry broken’
landscapes lie beyond a threshold, their hessians are gapped, and are locally
protected from Stokes points, whereas those of ‘many step replica-symmetry
broken’ have gapless hessians and Stokes points immediately proliferate. A
new matrix ensemble is found, playing the role that GOE plays for real land-
scapes in determining the topological nature of saddles.
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1. Introduction

Complex landscapes are functions of many variables having many minima and, inevitably,
many saddles of all indices (their number of unstable directions). Optimization attempts to
find the deepest minima, often a difficult task. For example, particles with a repulsive mutual
potential enclosed in a box will have many stable configurations, and we are asked to find the
one with lowest energy.

An aim of complexity studies is to classify these landscapes into families having common
properties. Two simplifications make the task potentially tractable. The first is to consider the
limit of many variables; in the example of the particles, the limit of many particles, i.e. the ther-
modynamic limit. The second simplification is of a more technical nature: we often consider
functions that contain some random element to them, and we study the ensemble average over
that randomness. The paradigm of this are spin-glasses, where the interactions are random,
and we are asked to find the ground state energy for typical samples.

Spin glass theory gave a surprise: random landscapes come in two kinds. The first kind
have a ‘threshold level’ of energy, below which there are many minima but almost no saddles,
resulting in lowminima that are separated by high barriers. The second have all sorts of saddles
all the way down to the lowest energy levels, and local minima are separated by barriers of
sub-extensive energy height. The latter are still complex, but good solutions are easier to find.
This classification is closely related to the structure of their replica trick solutions, the former
being ‘one step replica-symmetry broken’ and the latter being ‘many step replica-symmetry
broken.’ Armed with this solvable random example, it was easy to find non-random examples
that behave (at least approximately) in these two ways. For example, sphere packings and the
traveling salesman problem belong to first and second classes, respectively.

What about the classification of systems whose variables are not real, but rather, complex?
Recalling the Cauchy–Riemann conditions, one finds a difficulty: if our cost is, say, the real
part of a function of N complex variables, in terms of the corresponding 2N real variables
it has only saddles of index N. Even worse: often not all saddles are equally interesting, so
simply finding the lowest is not usually what we need to do. As it turns out, there is a set of
interesting questions to ask, as we describe below. For each saddle, there is a ‘thimble’ spanned
by the lines along which the cost function decreases. The way in which these thimbles fill the
complex space is crucial for many problems of analytic continuation, and is thus what we need
to study. The central role played by saddles in a real landscape, the ‘barriers’, is now played
by the Stokes lines, by which thimbles exchange their properties. Perhaps not surprisingly, the
two classes of real landscapes described above retain their significance in the complex case,
but the distinction is now that while in the first class the Stokes lines among the lowest minima
are rare, in the second class they proliferate.

In this paper we shall start from a many-variable integral of a real function, and deform it in
the many variable complex configuration space. The landscape one faces occupies the entirety
of this space, and we shall see that this is an example where the proliferation—or lack of it—of
Stokes lines is the interesting quantity in this context.

As for analytic continuation of physical theories: it is sometimes useful. Some theories
have a well-motivated Hamiltonian or action that nevertheless results in a divergent partition
function, and can only be properly defined by continuation from a parameter regime where
everything is well-defined [1]. Others result in oscillatory configuration space measures that
spoil the use of Monte Carlo or saddle point techniques, but can be treated in a regime where
the measure does not oscillate and the results continued to the desired model [2].
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In any case, the nicest modern technique (which we will describe in some detail) consists of
deforming the configuration space integral into a complex configuration space and then break-
ing it into pieces associated with stationary points of the action. Each of these pieces, known as
thimbles, has wonderful properties that guarantee convergence and prevent oscillations. Once
such a decomposition is made, analytic continuation is mostly easy, save for instances where
the thimbles interact, which must be accounted for.

When your action has a manageable set of stationary points, this process is often tractable.
However, many actions of interest are complex, having many stationary points with no simple
symmetry relating them, far too many to individually track. Besides appearing in classical
descriptions of structural and spin glasses, complex landscapes have recently become import-
ant objects of study in the computer science of machine learning, the condensed matter theory
of strange metals, and the high energy physics of black holes. What becomes of analytic con-
tinuation under these conditions?

2. Analytic continuation by thimble decomposition

2.1. Decomposition of the partition function into thimbles

Consider an action S defined on the (real) configuration space Ω. A typical calculation stems
from a configuration space average of some observable O of the form:

⟨O⟩= 1
Z

ˆ
Ω

dse−βS(s)O(s), (1)

where the partition function Z normalizes the average as:

Z=

ˆ
Ω

dse−βS(s). (2)

Rather than focus on any specific observable, we will study the partition function itself, since
it exhibits the essential features.

We’ve defined Z in a way that suggests application in statistical mechanics, but everything
here is general: the action can be complex- or even imaginary-valued, and Ω could be infinite-
dimensional. In typical contexts, Ω will be the euclidean real space RN or some subspace of
this like the sphere SN−1 (as in the p-spin spherical models on which we will treat later). In this
paper we will consider only analytic continuation of the parameter β, but any other parameter
would work equally well, e.g. of some parameter inside the action. The action for real β will
have some stationary points in the real configuration space, i.e. minima, maxima, saddles, and
the set of those points inΩwe will callΣ0, the set of real stationary points. An example action
used throughout this section is shown in figure 1.

In order to analytically continue equation (2), S must have an extension to a holomorphic
function on a larger complex configuration space Ω̃ containingΩ. In many cases this is accom-
plished by noticing that the action is some sum or product of holomorphic functions, e.g. poly-
nomials, and replacing its real arguments with complex ones. For RN the complex configura-
tion space Ω̃ isCN, while for the sphere SN−1 it takes a little more effort. SN−1 can be defined by
all points x ∈ RN such that xTx= 1. A complex extension of the sphere is made by extending
this constraint: all points z ∈ CN such that zTz= 1. Both cases are complex manifolds, since
they are defined by holomorphic constraints, and therefore admit a hermitian metric and a
symplectic structure. In the extended complex configuration space, the action often has more
stationary points. We’ll call Σ the set of all stationary points of the action, which naturally
contains the set of real stationary points Σ0.
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Figure 1. An example of a simple action and its stationary points. Left: the config-
uration space of the N= 2 spherical (or circular) model, defined for x ∈ RN restric-
ted to the circle N= xTx. It can be parameterized by one angle θ = arctan(x2/x1). Its
natural complex extension takes instead z ∈ CN restricted to the hyperbola N= zTz=
∥Rez∥2 −∥ Imz∥2. The (now complex) angle θ is still a good parameterization of con-
figuration space. Center: an action S for circular 3-spin model, defined by S(z1,z2) =
−1.051z31 − 1.180z21z2 − 0.823z1z22 − 1.045z32, plotted as a function of θ. Right: the sta-
tionary points of S in the complex-θ plane. In this example, and

. Symmetries exist between the stationary points both as a result of the conjug-
ation symmetry of S, which produces the vertical reflection, and because in the pure
3-spin models S(−z) =−S(z), which produces the simultaneous translation and inver-
sion symmetry.

Assuming S is holomorphic (and that the configuration space Ω is orientable, which is
usually true) the integral in equation (2) can be considered an integral over a contour in the
complex configuration space Ω̃, or:

Z=

˛
Ω

dse−βS(s). (3)

For the moment this translation has only changed a symbol from equation (2), but concep-
tually it is important: contour integrals can have their contour freely deformed (under some
constraints) without changing their value. This means that we are free to choose a nicer contour
than our initial configuration space Ω. This is illustrated in figure 2.

What properties are desirable for our contour? Consider the two motivations for perform-
ing analytic continuation cited in the introduction: we want our partition function to be well-
defined, i.e. for the configuration space integral to converge, and we want to avoid oscillations
in the phase of the integrand. The first condition, convergence, necessitates that the real part
of the action ReβS be bounded from below, and that it approach infinity in any limiting dir-
ection along the contour. The second, constant phase, necessitates that the imaginary part of
the action ImβS be constant.

Remarkably, there is an elegant recipe for accomplishing both these criteria at once, cour-
tesy of Picard–Lefschetz theory. For a more thorough review, see [1]. We will construct our
deformed contour out of a collection of pieces called thimbles. There is one thimble Jσ asso-
ciated with each of the stationary points σ ∈ Σ of the action, and it is defined by all points that
approach the stationary point sσ under gradient descent on ReβS: each thimble is the basin
of attraction of a saddle.

Thimbles guarantee convergent integrals by construction: the value of ReβS is bounded
from below on the thimble Jσ by its value ReβS(sσ) at the stationary point, since all other
points on the thimble must descend to reach it. And, as we will see in the following subsection,
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Figure 2. A schematic picture of the complex configuration space for the circular p-spin
model and its standard integration contour. Top: for real variables, the model is a circle,
and its analytic continuation is a kind of complex hyperbola, here shown schematically
in three dimensions. Bottom: since the real manifold (the circle) is one-dimensional, the
complex manifold has one complex dimension, here parameterized by the angle θ on
the circle. Left: the integration contour over the real configuration space of the circular
model. Center: complex analysis implies that the contour can be freely deformedwithout
changing the value of the integral. Right: a funny deformation of the contour in which
pieces have been pinched off to infinity. So long as no poles have been crossed, even
this is legal.

thimbles guarantee constant phase for the integrand as well, a result of the underlying complex
geometry of the problem.

What thimbles are necessary to reproduce our original contour, Ω? The answer is, we need
the minimal set which produces a contour between the same places. Simply stated, if Ω= R
produced a configuration space integral running along the real line from left to right, then our
contour must likewise go continuously from left to right, perhaps with detours to well-behaved
places at infinity (see figure 3). The less simply stated versions follows.

Let Ω̃T be the set of all points z ∈ Ω̃ such that ReβS(z)⩾ T, where we will take T to be a
very large number. Ω̃T contains the parts of the manifold where it is safe for any contour to end
up if its integral is to converge, since these are the places where the real part of the action is very
large and the real part of the integrand vanishes exponentially. The relative homology group
HN(Ω̃, Ω̃T) describes the homology ofN-dimensional cycles which begin and end inΩT, i.e. are
well-behaved. Therefore, any well-behaved cycle must represent an element of HN(Ω̃, Ω̃T). In
order for our collection of thimbles to produce the correct contour, the composition of the
thimbles must represent the same element of this relative homology group.

Each thimble represents an element of the relative homology, since each thimble is a contour
on which the real part of the action diverges at its extremes. And, thankfully for us, Morse
theory on our complex manifold Ω̃ implies that the set of all thimbles produces a basis for this
relative homology group, and therefore any contour can be represented by some composition
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Figure 3. A demonstration of the rules of thimble homology. Both figures depict the
complex-θ plane of action S featured in figure 1 with argβ = 0.4. The black symbols
lie on the stationary points of the action, and the grey regions depict the sets Ω̃T of
well-behaved regions at infinity (here T = 5). Left: lines show the thimbles of each sta-
tionary point. The thimbles necessary to recreate the cyclic path from left to right are
darkly shaded, while those unnecessary for the task are lightly shaded. Notice that all
thimbles come and go from the well-behaved regions. Right: lines show the antithimbles
of each stationary point. Notice that those of the stationary points involved in the contour
(shaded darkly) all intersect the desired contour (the real axis), while those not involved
do not intersect it.

of thimbles! There is even a systematic way to determine the contribution from each thimble:
for the stationary point σ ∈ Σ, let Kσ be its antithimble, defined by all points brought to sσ
by gradient ascent (and representing an element of the relative homology group HN(Ω̃, Ω̃−T)).
Then each thimbleJσ contributes to the contour with a weight given by its intersection pairing
nσ = ⟨C,Kσ⟩.

With these tools in hands, we can finally write the partition function as a sum over contri-
butions from each thimble, or:

Z=
∑
σ∈Σ

nσ

˛
Jσ

dse−βS(s). (4)

Under analytic continuation, the form of equation (4) generically persists.When the relative
homology of the thimbles is unchanged by the continuation, the integer weights are likewise
unchanged, and one can therefore use the knowledge of these weights in one regime to compute
the partition function in the other. However, their relative homology can change, and when this
happens the integer weights can be traded between stationary points. These trades occur when
two thimbles intersect, or alternatively when one stationary point lies in the gradient descent
of another. These places are called Stokes points, and the gradient descent trajectories that
join two stationary points are called Stokes lines. An example of this behavior can be seen in
figure 4.

The prevalence (or not) of Stokes points in a given continuation, and whether those that do
appear affect the weights of stationary points of interest, is a concern for the analytic continu-
ation of theories. If they do not occur or occur order-one times, one could reasonably hope to
perform such a procedure. If they occur exponentially often in the system size, there is little
hope of keeping track of the resulting weights, and analytic continuation is intractable.
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Figure 4. An example of a Stokes point in the continuation of the configuration space
integral involving the action S featured in figure 1. Left: argβ = 1.176. The collection
of thimbles necessary to progress around from left to right, highlighted in a darker color,
is the same as it was in figure 3. Center: argβ = 1.336. The thimble intersects the
stationary point and its thimble, leading to a situation where the contour is not easily
defined using thimbles. This is a Stokes point. Right: argβ = 1.496. The Stokes point
has passed, and the collection of thimbles necessary to produce the path has changed:
now must be included. Notice that in this figure, because of the symmetry of the
pure models, the thimble also experiences a Stokes point, but this does not result in
a change to the contour involving that thimble.

2.2. Gradient flow

The ‘dynamics’ describing thimbles is defined by gradient descent on the real part of the action,
with a given thimble incorporating all trajectories which asymptotically flow to its associated
stationary point. Since our configuration space is not necessary flat (as for the spherical p-spin
models), we will have to do a bit of differential geometry to work out the form of the flow.
Gradient descent on a complex manifold is given by:

ṡ=−grad ReβS =−
(

∂

∂s∗
ReβS

)♯

=−β∗

2
∂S∗

∂s∗
g−1 ∂

∂s
, (5)

where g is the metric and ∂S/∂s∗ = 0 because the action is holomorphic. If the complex con-
figuration space is CN and the metric is diagonal, this means that the flow is proportional to
the conjugate of the gradient, or ṡ∝−β∗(∂S/∂s)∗.

In the case we will consider here (namely, that of the spherical models), it will be more
convenient to work in terms of coordinates in a flat embedding space than in terms of local
coordinates in the curved space, e.g. in terms of z ∈ CN instead of s ∈ SN−1. Let z : Ω̃→ CN be
an embedding of complex configuration space into complex euclidean space. The dynamics
in the embedding space is given by:

ż=−β∗

2
∂S∗

∂z∗
(Dz)∗g−1(Dz)T

∂

∂z
, (6)

where Dz= ∂z/∂s is the Jacobian of the embedding. The embedding induces a metric on Ω̃
by g= (Dz)†Dz. Writing ∂ = ∂/∂z, this gives:

ż=−β∗

2
(∂S)†(Dz)∗[(Dz)†(Dz)]−1(Dz)T =−1

2
(∂S)†P, (7)

which is nothing but the projection of (∂S)∗ into the tangent space of the manifold, with the
projection operator P= (Dz)∗[(Dz)†(Dz)]−1(Dz)T. Note that P is hermitian.
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Figure 5. Example of gradient descent flow on the action S featured in figure 1 in the
complex-θ plane, with argβ = 0.4. Symbols denote the stationary points, while thick
blue and red lines depict the thimbles and antithimbles, respectively. Streamlines of the
flow equations are plotted in a color set by their value of ImβS; notice that the color is
constant along each streamline.

Though the projection operator can be derived for any particular manifold by defining a
coordinate system and computing it with the above definition, for simple manifolds like the
sphere it can be guessed easily enough, as the unique hermitian operator that projects out the
direction normal to the surface. For the sphere, this is:

P= I− zz†

|z|2
. (8)

One can quickly verify that this operator indeed projects the dynamics onto the manifold:
the vector perpendicular to the manifold at any point z is given by ∂(zTz) = z, and Pz= z−
z|z|2/|z|2 = 0. For any vector u perpendicular to z, i.e. z†u= 0, Pu= u, the identity. The flow
field resulting from this dynamics for the ‘circular’ model is shown in figure 5.
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Gradient descent on ReβS is equivalent to Hamiltonian dynamics with the Hamiltonian
ImβS and conjugate coordinates given by the real and imaginary parts of each complex
coordinate. This is because (Ω̃,g) is a Kähler manifold and therefore admits a symplectic
structure, but it can be shown that the flow conserves the imaginary action using equation (7)
and the holomorphic property of S:

d
dt

ImβS = ż∂ ImβS + ż∗∂∗ ImβS

=
i
4

(
(β∂S)†Pβ∂S − (β∂S)TP∗(β∂S)∗

)
=
i|β|2

4

(
(∂S)†P∂S − [(∂S)†P∂S]∗

)
=
i|β|2

4

(
∥∂S∥2 − (∥∂S∥∗)2

)
= 0,

(9)

where ∥v∥2 = v†Pv is the norm of a complex vector v in the tangent space of the manifold. The
flow of the action takes a simple form:

Ṡ = ż∂S =−β∗

2
(∂S)†P∂S =−β∗

2
∥∂S∥2. (10)

In the complex-S plane, dynamics is occurs along straight lines in a direction set by the argu-
ment of β.

2.3. The conditions for Stokes points

As we have seen, gradient descent on the real part of the action results in a flow that preserves
the imaginary part of the action. Stokes lines, when they manifest, are topologically persistent
so long as this conservation is respected: if a Stokes line connects two stationary points and the
action is smoothly modified under the constraint that the imaginary parts of the two stationary
points is held equal, the Stokes line will continue to connect them so long as the flow of a
third stationary point does not sever their connection, i.e. so long as there is not a topological
change in the flow. This implies that, despite being relatively low-dimensional surfaces of
codimension N, thimble connections are found with a codimension one tuning of parameters,
modulo the topological adjacency requirement. This means that, though not present in generic
cases, Stokes points generically appear when a dimension-one curve is followed in parameter
space.

Not all Stokes points result in the exchange of weight between thimbles. Examining figure 4
again, notice that the thimbles and also experience a Stokes point, but this does not
result in a change to the contour involving those thimbles. This is because the integer weights
can only be modified when a thimble that has some nonzero weight is downstream on the
gradient descent flow, and therefore a necessary condition for a meaningful change in the
thimble decomposition involving two stationary points σ and τ where nσ ̸= 0 and nτ = 0 is
for ReβS(sσ)< ReβS(sτ ).

Another necessary condition for the existence of a Stokes line between two stationary points
is for those points to have the same imaginary action. However, this is not a sufficient con-
dition. This can be seen in figure 6, which shows the thimbles of the circular 6-spin model.
The argument of β has been chosen such that the stationary points marked by ♣ and have
exactly the same imaginary energy, and yet they do not share a thimble. This is because these
stationary points are not adjacent: they are separated from each other by the thimbles of other

10



J. Phys. A: Math. Theor. 55 (2022) 434006 J Kent-Dobias and J Kurchan

Figure 6. Some thimbles of the circular 6-spin model, where the argument of β has been
chosen such that the imaginary parts of the action at the stationary points ♣ and are
exactly the same (and, as a result of conjugation symmetry, the points and ).

stationary points. This is a consistent story in one complex dimension, since the codimen-
sion of the thimbles is one, and thimbles can divide space into regions. However, in higher
dimensions thimbles do not have a codimension high enough to divide space into regions.
Nonetheless, thimble intersections are still governed by a requirement for adjacency. Figure 7
shows a projection of the thimbles of an N= 3 2-spin model, which is defined on the sphere.
Because of an inversion symmetry of the model, stationary points on opposite sides of the
sphere have identical energies, and therefore also share the same imaginary energy. However,
their thimbles (blue and green in the figure) do not intersect. Here, they could not possibly
intersect, since the real parts of their energy are also the same, and upward flow could there-
fore not connect them.

Determining whether stationary points are adjacent in this sense is a difficult problem,
known as the global connection problem [3]. It is also difficult for us to reason rigorously about
the properties of stationary point adjacency. However, we have a coarse argument for why, in
generic cases with random actions, one should expect the typical number of adjacent stationary
points to scale algebraically with dimension. First, notice that in order for two stationary points
to be eligible to share a Stokes point, their thimbles must approach the same ‘good’ region of
complex configuration space. This is because weight is traded at Stokes points when a facet
of one thimble flops over another between good regions. Therefore, one can draw conclusions

11
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Figure 7. Thimbles of the N= 3 spherical 2-spin model projected into the Reθ, Reϕ,
Imθ space. The blue and green lines trace gradient descent of the two minima, while
the red and orange lines trace those of the two saddles. The location of the maxima are
marked as points, but their thimbles are not shown.

about the number of stationary points eligible for a Stokes point with a given stationary point
by examining the connectivity of the ‘good’ regions.

In the one-dimensional examples above, the ‘good regions’ for contours are zero-
dimensional, making their topology discrete. However, in a D-dimensional case, these regions
are D− 1 dimensional, and their topology is richer. Slices of thimbles evaluated at constant
‘height’ as measured by the real part of the action are topologicallyD− 1 spheres. These slices
are known as the vanishing cycles of the thimble. At the extremal reaches of the configuration
space manifold, these spherical slices form a mesh, sharing sections of their boundary with
the slices of other thimbles and covering the extremal reaches like a net. Without some special

12



J. Phys. A: Math. Theor. 55 (2022) 434006 J Kent-Dobias and J Kurchan

Figure 8. The behavior of thimble contours near argβ = 0 for real actions. In all pic-
tures, green arrows depict a canonical orientation of the thimbles relative to the real
axis, while purple arrows show the direction of integration implied by the orientation.
Left: argβ =−0.1. To progress from left to right, one must follow the thimble from
the minimum in the direction implied by its orientation, and then follow the thimble
from the maximum against the direction implied by its orientation, from top to bot-
tom. Therefore, . Center: argβ = 0. Here the thimble of the minimum
covers almost all of the real axis, reducing the problem to the real configuration space
integral. This is also a Stokes point. Right: argβ = 0.1. Here, one follows the thimble
of the minimum from left to right again, but now follows that of the maximum in the
direction implied by its orientation, from bottom to top. Therefore, .

symmetry to produce vertices in this mesh where many thimbles meet, such a mesh generally
involves orderD boundaries coming together in a given place. Considering the number of faces
on a given extremal slice should also be roughly linear in D, one expects something like quad-
ratic growth with D of eligible neighbors, something which gives a rough sense of locality in
Stokes point interactions.

2.4. The structure of stationary points

The shape of each thimble in the vicinity of its stationary point can be described using an
analysis of the hessian of the real part of the action at the stationary point. Here we will
review some general properties of this hessian, which has rich structure because the action
is holomorphic.

Writing down the hessian using the complex geometry of the previous section would be
arduous. Luckily, we are only interested in the hessian at stationary points, and our manifolds
of interest are constraint surfaces. These two facts allow us to find the hessian at stationary
points using a simpler technique, that of Lagrange multipliers.

Suppose that our complex manifold Ω̃ is defined by all points z ∈ CN such that g(z) =
0 for some holomorphic function g. In the case of the spherical models, g(z) = 1

2 (z
Tz−N).

Introducing the Lagrange multiplier µ, we define the constrained action:

S̃(z) = S(z)−µg(z). (11)

The condition for a stationary point is that ∂S̃ = 0. This implies that, at any stationary point,
∂S = µ∂g. In particular, if ∂gT∂g ̸= 0, we find the value for the Lagrange multiplier µ as:

µ=
∂gT∂S
∂gT∂g

. (12)

13
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As a condition for a stationary point, this can be intuited as projecting out the normal to the
constraint surface ∂g from the gradient of the unconstrained action. It implies that the hessian
with respect to the complex embedding coordinate z at any stationary point is:

HessS = ∂∂S̃ = ∂∂S − ∂gT∂S
∂gT∂g

∂∂g. (13)

In practice one must neglect the directions normal to the constraint surface by projecting
them out using P from the previous section, i.e. PHessSPT. For notational simplicity we will
not include this here.

In order to describe the structure of thimbles, one must study the hessian of ReβS, since it
is the upward directions in the flow on the real action in the vicinity of stationary points which
define them. We first pose the problem as one of 2N real variables x,y ∈ RN with z= x+ iy.
The hessian of the real part of the action with respect to these real variables is:

Hessx,yReβS =

[
∂x∂xReβS̃ ∂y∂xReβS̃
∂x∂yReβS̃ ∂y∂yReβS̃

]
. (14)

This can be simplified using the fact that the action is holomorphic, which means that it
obeys the Cauchy–Riemann equations:

∂xRe S̃ = ∂y Im S̃ ∂yRe S̃ =−∂x Im S̃. (15)

Using these relationships alongside the Wirtinger derivative ∂ ≡ 1
2 (∂x− i∂y) allows the order

of the derivatives and the real or imaginary parts to be commuted, with:

∂xRe S̃ = Re∂S̃ ∂yRe S̃ =−Im∂S̃
∂x Im S̃ = Im∂S̃ ∂y Im S̃ = Re∂S̃

. (16)

Using these relationships, the hessian equation (14) can be written in the more manifestly
complex way:

Hessx,yReβS =

[
Reβ∂∂S̃ −Imβ∂∂S̃

−Imβ∂∂S̃ −Reβ∂∂S̃

]
=

[
ReβHessS −ImβHessS

−ImβHessS −ReβHessS

]
,

(17)

where HessS is the hessian with respect to z given in (13).
The eigenvalues and eigenvectors of the hessian are important for evaluating thimble integ-

rals, because those associated with upward directions provide a local basis for the surface of
the thimble. Suppose that vx,vy ∈ RN are such that:

(Hessx,yReβS)
[
vx
vy

]
= λ

[
vx
vy

]
, (18)

where the eigenvalue λ must be real because the hessian is real symmetric. The problem can
be put into a more obviously complex form by a change of basis. Writing v= vx+ ivy, we find:

[
0 (iβHessS)∗

iβHessS 0

][
v
iv∗

]
=

[
1 i
i 1

]
(Hessx,yReβS)

[
1 i
i 1

]−1 [
1 i
i 1

][
vx
vy

]
= λ

[
1 i
i 1

][
vx
vy

]
= λ

[
v
iv∗

]
.

(19)
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It therefore follows that the eigenvalues and vectors of the real hessian satisfy the equation:

βHessSv= λv∗, (20)

a sort of generalized eigenvalue problem whose solutions are called the Takagi vectors of
HessS [4]. If we did not know the eigenvalues were real, we could still see it from the second
implied equation, (βHessS)∗v∗ = λv, which is the conjugate of the first if λ∗ = λ.

Something hidden in the structure of the real hessian but more clear in its complex form is
that each eigenvalue comes in a pair, since:

βHessS(iv) = iλv∗ =−λ(iv). (21)

Therefore, if λ satisfies (20) with Takagi vector v, than so does −λ with associated Takagi
vector iv, rotated in the complex plane. It follows that each stationary point has an equal number
of descending and ascending directions, i.e. the index of each stationary point is N. For a
stationary point in a real problem this might seem strange, because there are clear differences
between minima, maxima, and saddles of different index. However, for such a stationary point,
its N real Takagi vectors that determine its index in the real problem are accompanied by N
purely imaginary Takagi vectors, pointing into the complex plane and each with the negative
eigenvalue of its partner. A real minimum on the real manifold therefore has N downward
directions alongside its N upward ones, all pointing directly into complex configuration space.

The effect of changing the argument of β is revealed by (20). Writing β = |β|eiϕ and divid-
ing both sides by |β|eiϕ/2, one finds:

HessS(eiϕ/2v) = λ

|β|
e−iϕ/2v∗ =

λ

|β|
(eiϕ/2v)∗. (22)

Therefore, one only needs to consider solutions to the Takagi problem for the action alone,
HessSv0 = λ0v∗0 , and then rotate the resulting Takagi vectors by a constant phase correspond-
ing to half the argument of β, or v(ϕ) = v0e−iϕ/2. One can see this in the examples of figures 4
and 8, where increasing the argument of β from left to right produces a clockwise rotation of
the thimbles in the complex-θ plane.

The eigenvalues associated with the Takagi vectors can be further related to properties of the
complex symmetric matrix βHessS. Suppose that u ∈ RN satisfies the eigenvalue equation:

(βHessS)†(βHessS)u= σu, (23)

for some positive real σ (because (βHessS)†(βHessS) is self-adjoint and positive definite).
The square root of these numbers,

√
σ, are the definition of the singular values of βHessS.

A direct relationship between these singular values and the eigenvalues of the real hessian
immediately follows by taking a Takagi vector v ∈ C that satisfies equation (20), and writing:

σv†u= v†(βHessS)†(βHessS)u= (βHessSv)†(βHessS)u
= (λv∗)†(βHessS)u= λvT(βHessS)u= λ2v†u.

(24)

Thus if v†u ̸= 0, λ2 = σ. It follows that the eigenvalues of the real hessian are the singular
values of the complex matrix βHessS, and the Takagi vectors coincide with the eigenvectors
of the singular value problem up to a complex factor.

15



J. Phys. A: Math. Theor. 55 (2022) 434006 J Kent-Dobias and J Kurchan

2.5. Evaluating thimble integrals

After all the work of decomposing an integral into a sum over thimbles, one eventually wants to
evaluate it. For large |β| and in the absence of any Stokes points, one can come to a nice asymp-
totic expression. For a thorough account of evaluating these integrals (including at Stokes
points), see Howls [3].

Suppose that σ ∈ Σ is a stationary point at sσ ∈ Ω̃ with a thimble Jσ that is not involved
in any upstream Stokes points. Define its contribution to the partition function (neglecting the
integer weight) as:

Zσ =

˛
Jσ

dse−βS(s). (25)

To evaluate this contour integral in the limit of large |β|, we will make use of the saddle
point method, since the integral will be dominated by its value at and around the stationary
point, where the real part of the action is by construction at its minimum on the thimble and
the integrand is therefore largest.

We will make a change of coordinates u(s) : Jσ → RD, where D is the dimension of the
manifold (D= N− 1 for the spherical models), such that:

βS(s) = βS(sσ)+
|β|
2
u(s)Tu(s), (26)

and the direction of each ∂u/∂s is aligned with the direction of the contour. This is possible
because, in the absence of any Stokes points, the eigenvectors of the hessian at the stationary
point associated with positive eigenvalues provide a basis for the thimble. The coordinates
u can be real because the imaginary part of the action is constant on the thimble, and there-
fore stays with the value it holds at the stationary point, and the real part is at its minimum.
The preimage of u(s)Tu(s) gives the vanishing cycles of the thimble, discussed in an earlier
subsection.

The coordinates u can be constructed implicitly in the close vicinity of the stationary point,
with their inverse being:

s(u) = sσ +
D∑
i=1

√
|β|
λ(i)

v(i)ui+O(u2), (27)

where the sum is over pairs (λ,v) which satisfy (20) and have λ> 0. It is straightforward to
confirm that these coordinates satisfy (26) asymptotically close to the stationary point, as:

βS(s(u)) = βS(sσ)+
1
2
(s(u)− sσ)

T(βHessS)(s(u)− sσ)+ · · ·

= βS(sσ)+
|β|
2

∑
ij

v(i)k√
λ(i)

(β[HessS]kℓ)
v( j)ℓ√
λ( j)

uiuj+ · · ·

= βS(sσ)+
|β|
2

∑
ij

v(i)k√
λ(i)

λ( j)
(
v( j)k

)∗
√
λ( j)

uiuj+ · · ·

= βS(sσ)+
|β|
2

∑
ij

√
λ( j)

√
λ(i)

δijuiuj+ · · ·

= βS(sσ)+
|β|
2

∑
i

u2i + · · ·

. (28)
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The Jacobian of this transformation is:

∂si
∂uj

=

√
|β|
λ( j)

v( j)i + · · ·=
√

1

λ
( j)
0

v( j)i + · · · , (29)

where λ( j)
0 = λ( j)/|β| is the jth eigenvalue of the hessian evaluated at the stationary point for

β= 1. This is naïvely an N×D matrix, because the Takagi vectors are N dimensional, but
care must be taken to project each into the tangent space of the manifold to produce a D×D
matrix. This lets us write Uij = v( j)i a D×D unitary matrix, whose determinant will give the
correct phase for the measure.

We therefore have:

Zσ = e−βS(sσ)
ˆ
du det

ds
du
e−

|β|
2 uTu, (30)

which is exact. Now we take the saddle point approximation, assuming the integral is domin-
ated by its value at the stationary point, and therefore that the determinant can be approximated
by its value at the stationary point. This gives:

Zσ ≃ e−βS(sσ) det
ds
du

∣∣∣∣
s=sσ

ˆ
due−

|β|
2 uTu

= e−βS(sσ)

(
D∏
i

√
1

λ
(i)
0

)
detU

(
2π
|β|

)D/2

= e−βS(sσ)|detHessS(sσ)|−1/2 detU

(
2π
|β|

)D/2

.

(31)

We are left with evaluating the determinant of the unitary part of the coordinate transforma-
tion. In circumstances you may be used to, only the absolute value of the determinant from the
coordinate transformation is relevant, and since the determinant of a unitary matrix is always
magnitude one, it does not enter the computation. However, because we are dealing with a con-
tour integral, the directions matter, and there is not an absolute value around the determinant.
Therefore, we must determine the phase that it contributes.

This is difficult in general, but for real stationary points it can be reasoned out easily. Take
the convention that direction of contours along the real line is with the standard orientation.
Then, when β= 1 a stationary point of index k has D− k real Takagi vectors and k purely
imaginary Takagi vectors that correspond with upward directions in the flow and contribute to
its thimble. The matrix of Takagi vectors can therefore be written U= ikO for an orthogonal
matrix O, and with all eigenvectors canonically oriented detO= 1. We therefore have detU=
ik when β= 1. As the argument of β is changed, we know how the eigenvectors change: by a
factor of e−iϕ/2 for ϕ= argβ. Therefore, the contribution for general β is detU= (e−iϕ/2)Dik.
We therefore have, for real stationary points of a real action,

Zσ ≃
(

2π
|β|

)D/2

e−iϕD/2ikσ |detHessS(sσ)|−
1
2 e−βS(sσ)

=

(
2π
β

)D/2

ikσ |detHessS(sσ)|−
1
2 e−βS(sσ).

(32)

We can see that the large-β approximation is consistent with the relationship between
thimble orientation and integer weight outlined in figure 8. There, it is seen that taking the
argument of β through zero results in a series of Stokes points among real stationary points
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of a real action which switches the sign of the integer weights of thimbles with odd index and
preserves the integer weights of thimbles with even index. For a real action, taking β → β∗

should simply take Z→ Z∗. Using the formula above, we find:

Z(β)∗ =
∑
σ∈Σ0

nσZσ(β)
∗ =

∑
σ∈Σ0

nσ(−1)kσZσ(β
∗) = Z(β∗), (33)

as expected.

3. The ensemble of symmetric complex-normal matrices

Having introduced the general method for analytic continuation, we will now begin deal-
ing with the implications of actions defined in many dimensions with disorder. We saw in
section 2.4 that the singular values of the complex hessian of the action at each stationary
point are important to the study of thimbles. Hessians are symmetric matrices by construc-
tion. For real actions of real variables, the study of random symmetric matrices with Gaussian
entries provides insight into a wide variety of problems. In our case, we will find the relevant
ensemble is that of random symmetric matrices with complex-normal entries. In this section,
we will introduce this distribution, review its known properties, and derive its singular value
distribution in the large-matrix limit.

The complex normal distribution with zero mean is the unique Gaussian distribution in one
complex variable Z whose variances are Z∗Z= |Z|2 = Γ and Z2 = C.Γ is positive, and |C|⩽ Γ.
The special case of C= Γ, where the variance of the complex variable and its covariance with
its conjugate are the same, reduces to the ordinary normal distribution. The case where C= 0
results in the real and imaginary parts of Z being uncorrelated, in what is known as the standard
complex normal distribution. The probability density function for general Γ and C is defined
by:

p(z | Γ,C) = 1

π
√
Γ2 − |C|2

exp

{
1
2

[
z∗ z

][ Γ C
C∗ Γ

]−1 [
z
z∗

]}
. (34)

This is the same as writing Z= X+ iY and requiring that the mutual distribution in X and
Y be normal with X2 = Γ+ ReC, Y2 = Γ−ReC, and XY= ImC.

We will consider an ensemble of random N×N matrices B= A+λ0I, where the entries
of A are complex-normal distributed with variances |Aij|2 = Γ0/N and A2

ij = C0/N, and λ0 is a
constant shift to the diagonal. The eigenvalue distribution of the matrices A is already known
to take the form of an elliptical ensemble in the large-N limit, with constant support inside the
ellipse defined by:(

Re(λeiθ)
1+ |C0|/Γ0

)2

+

(
Im(λeiθ)

1− |C0|/Γ0

)2

< Γ0, (35)

where θ = 1
2 argC0 [5]. The eigenvalue spectrum of B is therefore constant inside the same

ellipse translated so that its center lies at λ0. Examples of these distributions are shown in the
insets of figure 9.

When C= 0 and the elements of A are standard complex normal, the singular value dis-
tribution of B is a complex Wishart distribution. For C ̸= 0 the problem changes, and to our
knowledge a closed form of the singular value distribution is not in the literature. We have
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worked out an implicit form for the singular value spectrum using the replica method, first
published in [6].

The singular values of B correspond with the square-root of the eigenvalues of B†B, but also
they correspond to the absolute value of the eigenvalues of the real 2N× 2N block matrix:[

ReB −ImB
−ImB −ReB

]
, (36)

as we saw in section 2.4. The 2N× 2N problem is easier to treat analytically than the N×N
one because the matrix under study is linear in the entries of B. The eigenvalue spectrum of
this block matrix can be studied by ordinary techniques from random matrix theory. Defining
the ‘partition function’:

Z(σ) =
ˆ
dxdy exp

{
−1

2

[
x y

](
σI−

[
ReB −ImB

−ImB −ReB

])[
x
y

]}
, (37)

implies a Green function:

G(σ) =
∂

∂σ
logZ(σ), (38)

whose poles give the singular values of B. This can be put into a manifestly complex form
using the method of section 2.4, with the same linear transformation of x,y ∈ RN into z ∈ CN.
This gives:

Z(σ) =
ˆ
dz∗dz exp

{
−1

2

[
z∗ −iz

](
σI−

[
0 (iB)∗

iB 0

])[
z
iz∗

]}
=

ˆ
dz∗dz exp

{
−1

2

(
2z†zσ− z†B∗z∗ − zTBz

)}
=

ˆ
dz∗dz exp

{
−z†zσ+ Re(zTBz)

}
, (39)

which is a general expression for the singular values σ of a symmetric complex matrix B.
Introducing replicas to eliminate the logarithm in the Green function [7] gives:

G(σ) = lim
n→0

ˆ
dz∗dzz†0z0 exp

{
−

n∑
α

[
z†αzασ+ Re

(
zTαBzα

)]}
(40)

The average is then made over the entries of B and Hubbard–Stratonovich is used to change
variables to the replica matrices Nααβ = z†αzβ and Nχαβ = zTαzβ , and a series of replica vec-
tors. The replica-symmetric ansatz leaves all replica vectors zero, and ααβ = α0δαβ , χαβ =
χ0δαβ . The result is:

G(σ) = N lim
n→0

ˆ
dα0 dχ

∗
0 dχ0α0 exp

{
nN

[
1+

1
8
Γ0α

2
0 −

α0σ

2

+
1
2
log(α2

0 − |χ0|2)+
1
2
Re

(
1
4
C∗

0χ
2
0 +λ∗

0χ0

)]}
.

(41)

The argument of the exponential has several saddles. The solutions α0 are the roots of a
sixth-order polynomial, and the root with the smallest value of Reα0 gives the correct solution
in all the cases we studied. A detailed analysis of the saddle point integration is needed to
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Figure 9. Eigenvalue and singular value spectra of a randommatrix B= A+λ0I, where
the entries of A are complex-normal distributed with N|Aij|2 = Γ0 = 1 and NA2

ij = C0 =
7
10e

iπ/8. The diagonal shifts differ in each plot, with (a) λ0 = 0, (b) λ0 =
1
2 |λgap|,

(c) λ0 = |λgap|, and (d) λ0 =
3
2 |λgap|. The shaded region of each inset shows the support

of the eigenvalue distribution (35). The solid line on each plot shows the distribution of
singular values (42), while the overlaid histogram shows the empirical distribution from
210 × 210 complex normal matrices.

understand why this is so. Evaluated at such a solution, the density of singular values follows
from the jump across the cut in the infinite-N limit, or:

ρ(σ) =
1
iπN

(
lim

Imσ→0+
G(σ)− lim

Imσ→0−
G(σ)

)
. (42)

Examples of this distribution can be seen in figure 9 compared with numeric experiments.
The formation of a gap in the singular value spectrum naturally corresponds to the origin

leaving the support of the eigenvalue spectrum. Weyl’s theorem requires that the product over
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the norm of all eigenvalues must not be greater than the product over all singular values [8].
Therefore, the absence of zero eigenvalues implies the absence of zero singular values. The
determination of the constant shift λ0 at which the distribution of singular values becomes
gapped is reduced to the geometry problem of determining when the boundary of the ellipse
defined in (35) intersects the origin, and yields:

|λgap|2 = Γ0
(1− |δ|2)2

1+ |δ|2 − 2|δ|cos(argδ+ 2argλ0)
, (43)

for δ = C0/Γ0. Because the support is an ellipse, this naturally depends on the argument of λ0,
or the direction in the complex plane in which the distribution is shifted.

4. The p-spin spherical models

The p-spin spherical models are defined by the action:

S(x) =
∞∑
p=2

apSp(x), (44)

which is a sum of the ‘pure’ p-spin actions:

Sp(x) =
1
p!

∑
i1···ip

Ji1···ipxi1 · · ·xip . (45)

The variables x ∈ RN are constrained to lie on the sphere x2 = N, making the modelD= N− 1
dimensional. The couplings J form totally symmetric p-tensors whose components are nor-
mally distributed with zero mean and variance J2 = p!/2Np−1. The ‘pure’ p-spin models have
ai = δip, while the mixed have some more complicated set of coefficients a.

The configuration space manifold Ω= {x | x2 = N,x ∈ RN} has a complex extension Ω̃ =
{z | z2 = N,z ∈ CN}. The natural extension of the Hamiltonian equation (44) to this complex
manifold by replacing x with z ∈ CN is holomorphic. The normal to this manifold at any point
z ∈ Ω̃ is always in the direction z. The projection operator onto the tangent space of this man-
ifold is given by:

P= I− zz†

|z|2
, (46)

where indeed Pz= z− z|z|2/|z|2 = 0 and Pz ′ = z ′ for any z′ orthogonal to z. When studying
stationary points, the constraint can be added to the action using a Lagrange multiplier µ by
writing:

S̃(z) = S(z)− µ

2
(zTz−N). (47)

The gradient of the constraint is simple with ∂g= z, and (12) implies that:

µ=
1
N
zT∂S =

∞∑
p=2

app
Sp(z)
N

. (48)

For the pure p-spin in particular this implies that µ= pϵ for specific energy ϵ= Sp/N.
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4.1. 2-spin

The pure 2-spin model is diagonalizable and therefore exactly solvable, and is not complex
in the sense of having a superextensive number of stationary points in its action. However, it
makes a good exercise of how the ideas of analytic continuation will apply in the literally more
complex case of the p-spin for p> 2. The Hamiltonian of the pure 2-spin model is defined by:

S2(z) =
1
2
zTJz, (49)

where the matrix J is generically diagonalizable. In a diagonal basis, Jij = λiδij. Then ∂iH=
λizi. We will henceforth assume to be working in this basis. The constrained action is:

S̃(z) = S2(z)− ϵ(zTz−N), (50)

Stationary points must satisfy:

0= ∂iS̃ = (λi− 2ϵ)zi, (51)

which is only possible for zi = 0 or ϵ= 1
2λi. Generically the λi will all differ, so this can only

be satisfied for one λi at a time, and to be a stationary point all other zj must be zero. In the
direction in question,

1
N

1
2
λiz

2
i = ϵ=

1
2
λi, (52)

whence zi =±
√
N. Thus there are 2N stationary points, each corresponding to ± the cardinal

directions on the sphere in the diagonalized basis. The energy at each stationary point is real
if the couplings are real, and therefore there are no complex stationary points in the ordinary
2-spin model.

Imagine for a moment that the coupling are allowed to be complex, giving the stationary
points of the model complex energies and therefore potentially interesting thimble structure.
Generically, the eigenvalues of the couplingmatrix will have distinct imaginary parts, and there
will be no Stokes lines. Suppose that two stationary points are brought to the same imaginary
energy by some continuation; without loss of generality, assume these are associated with the
first and second cardinal directions. Since the gradient is proportional to z, any components
that are zero at some time will be zero at all times. The gradient flow dynamics for the two
components of interest assuming all others are zero are:

ż1 =−z∗1
(
λ∗
1 −

λ∗
1z

∗
1z1 +λ∗

2z
∗
2z2

|z1|2 + |z2|2

)
=−(λ1 −λ2)

∗z∗1
|z2|2

|z1|2 + |z2|2
, (53)

and the same for z2 with all indices swapped. Since∆= λ1 −λ2 is real when the energies and
therefore eigenvalues have the same imaginary part, if z1 begins real it remains real, with the
same for z2. Since the stationary points are at real z, we make this restriction, and find:

d
dt

(
z21 + z22

)
= 0

d
dt
z2
z1

=∆
z2
z1
. (54)

Therefore z2/z1 = e∆t, with z21 + z22 = N as necessary. Depending on the sign of ∆, z flows
from one stationary point to the other over infinite time. This is a Stokes line, and establishes
that any two distinct stationary points in the 2-spin model with the same imaginary energy will
possess one. These trajectories are plotted in figure 10.
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Figure 10. The Stokes line in the 2-spin model when the stationary points associated
with the first and second cardinal directions are brought to the same imaginary energy.∆
is proportional to the difference between the real energies of the first and the second sta-
tionary point; when∆> 0 flow is from first to second, while when∆< 0 it is reversed.

Since they sit at the corners of a simplex, the distinct stationary points of the 2-spin model
are all adjacent: no stationary point is separated from another by the separatrix of a third. This
means that when the imaginary energies of two stationary points are brought to the same value,
their surfaces of constant imaginary energy join. However, this is not true for stationary points
related by the symmetry z→−z, as seen in figure 7.

Since the 2-spin model with real couplings does not have any stationary points in the com-
plex plane, analytic continuation can be made without any fear of running into Stokes points.
Starting from real, large β, making an infinitesimal phase rotation into the complex plane
results in a decomposition into thimbles where that of each stationary point is necessary,
because all stationary points are real and their antithimbles all intersect the real sphere. The
curvature of the action at the stationary point lying at zi =

√
Nδik in the jth direction is given

by λk−λj = 2(ϵk− ϵj). Therefore the generic case of N distinct eigenvalues of the coupling
matrix leads to 2N stationary points with N distinct energies, two at each index from 0 to
D= N− 1. Starting with the expression (32), we have:

Z=

ˆ
SN−1

dse−βS2(s) =
∑
σ∈Σ0

nσ

ˆ
Jσ

dse−βS2(s)

≃
∑
σ∈Σ0

ikσ
(
2π
β

)D/2

e−βS2(sσ)|detHessS2(sσ)|−
1
2

= 2
D∑
k=0

exp

iπ2 k+ D
2
log

2π
β

−Nβϵk−
1
2

∑
ℓ̸=k

log2|ϵk− ϵℓ|

 ,

(55)
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where εk is the energy of the twin stationary points of index k. In the large N limit, we take
advantage of the limiting distribution ρ of these energies to write:

Z≃ 2
ˆ
dϵρ(ϵ)exp

{
i
π

2
kϵ +

D
2
log

2π
β

−Nβϵ− D
2

ˆ
dϵ ′ ρ(ϵ ′) log2|ϵ− ϵ ′|

}
= 2
ˆ
dϵρ(ϵ)eNf(ϵ),

, (56)

since the J of the 2-spinmodel is a symmetric real matrix with variance 1/N, its eigenvalues are
distributed by a semicircle distribution of radius 2, and therefore the energies ε are distributed
by a semicircle distribution of radius one, with:

ρ(ϵ) =
2
π

√
1− ϵ2. (57)

The index as a function of energy level is given by the cumulative density function:

kϵ = D
ˆ ϵ

−∞
dϵ ′ ρ(ϵ ′) =

D
π

(
ϵ
√

12 − ϵ2 + 2tan−1 1+ ϵ√
1− ϵ2

)
. (58)

Finally, the product over the singular values corresponding to descending directions gives:

1
2

ˆ
dϵ ′ ρ(ϵ ′) log2|ϵ− ϵ ′|=−1

4
+

1
2
ϵ2, (59)

for ϵ2 < 1. This gives the function f in the exponential as:

Re f=−ϵReβ+
1
4
− 1

2
ϵ2, (60)

Im f=−ϵ Imβ+
1
2

(
ϵ
√

1− ϵ2 + 2tan−1 1+ ϵ√
1− ϵ2

)
. (61)

The value of the integral will be dominated by the contribution near the maximum of the
real part of f, which is:

ϵmax =

{
−Reβ Reβ ⩽ 1
−1 otherwise

(62)

For Reβ > 1, the maximum is concentrated in the ground state and the real part of f comes to
a cusp, meaning that the oscillations do not interfere in taking the saddle point. Once this line
is crossed and the maximum enters the bulk of the spectrum, one expects to find cancellations
caused by the incoherent contributions of thimbles with nearby energies to ϵmax. Therefore,
one expects that Z enters a phase with no coherent average when Reβ = 1.

On the other hand, there is another point where the thimble sum becomes coherent. This is
when the oscillation frequency near the maximum energy goes to zero. This happens for:

0=
∂

∂ϵ
Im f
∣∣∣
ϵ=ϵmax

=−Imβ+
√

1− ϵ2max =−Imβ+
√

1− (Reβ)2, (63)

or for |β|= 1. Here the sum of contributions from thimbles near the maximum again becomes
coherent, because the period of oscillations in ε diverges at the maximum. These conditions
correspond precisely to the phase boundaries of the density of zeros in the 2-spin model found
previously using other methods [9, 10].

We’ve seen that even in the 2-spin model, which is not complex, making a thimble decom-
position in a theory with many saddles does not necessarily fix the sign problem. Instead, it
takes a potentially high-dimensional sign problem and produces a one-dimensional one, rep-
resented by the oscillatory integral over eNf(ϵ). In some regimes, it can be argued that integral
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has a maximum with a coherent neighborhood, allowing computation to be made. In others,
oscillations in the phase remain, from the sum over the many thimbles. We will find a similar
story for the pure p-spin models for p> 2 in the next sections, complicated by the additional
presence of Stokes points in the continuation.

4.2. Pure p-spin: where are the saddles?

We studied the distribution of stationary points in the pure p-spin models in previous work
[6]. Here, we will review the method and elaborate on some of the results relevant to analytic
continuation.

The complexity of the real p-spin models has been studied extensively, and is even known
rigorously [11]. If N (ϵ) is the number of stationary points with specific energy ε, then the
complexity is defined by:

Σ(ϵ) = lim
N→∞

1
N

logN (ϵ), (64)

a natural measure of how superextensive the average number N ∼ eNΣ is. The complexity
is also known for saddles of particular index, with, e.g. Σk=1 measuring the complexity of
rank-one saddles and Σk=0 measuring that of minima. The minimum energy for which Σk=0

is positive corresponds to the ground state energy of the model, because at large N below this
the number of minima is expected to be exponentially small with N. We’ll write the ground
state energy as ϵk=0, and the lowest energies at which rank j saddles are found as ϵk=j, so that,
e.g.:

0=Σ(ϵk=0) = Σk=0(ϵk=0) 0=Σk=1(ϵk=1). (65)

In the real case, the p-spin models possess a threshold energy:

|ϵth|2 =
2(p− 1)

p
, (66)

below which there are exponentially many minima compared to saddles, and above which
vice versa. This threshold persists in a more generic form in the complex case, where now the
threshold separates stationary points that have mostly gapped from mostly ungapped spectra.
Since the p-spinmodel has a hessian that consists of a symmetric complexmatrix with a shifted
diagonal, we can use the results of section 2.4. The variance of the p-spin hessian without
shift is:

|∂∂Sp|2 =
p(p− 1)

(
1
N z

†z
)p−2

2N
=
p(p− 1)

2N
(1+ 2Y)p−2, (67)

(∂∂Sp)2 =
p(p− 1)

(
1
N z

Tz
)p−2

2N
=
p(p− 1)

2N
, (68)

where Y= 1
N∥ Imz∥2 is a measure of how far the stationary point is into the complex configur-

ation space. As expected for a real problem, the two variances coincide when Y = 0. The diag-
onal shift is−pϵ. In the language of section 2.4, this means that Γ0 = p(p− 1)(1+ 2Y)p−2/2,
C0 = p(p− 1)/2, and λ0 =−pϵ. This means that the energy at which the gap appears is,
using (43):

|ϵgap|2 =
p− 1
2p

[1− (1+ 2Y)2(p−2)]2(1+ 2Y)p−2

1+(1+ 2Y)2(p−2) − 2(1+ 2Y)p−2 cos(2argϵ)
. (69)

When ε is real, limY→0 |ϵgap|= |ϵth|.
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The complexity of stationary points by their energy and location Y can be determined by
the Kac–Rice formula. Any stationary point of the action is a stationary point of the real part
of the action, and we can write:

N =

ˆ
dxdyδ(∂xRe S̃p)δ(∂yRe S̃p) |detHessx,yReSp| . (70)

This expression is to be averaged over J to give the complexity Σ as NΣ= logN , a calcu-
lation that involves the replica trick. Based on the experience from similar problems [12],
the annealed approximation NΣ∼ logN is expected to be exact wherever the complexity is
positive.

As in section 2.4, this expression can be bright into a manifestly complex form using
Cauchy–Riemann relations. This gives:

N =

ˆ
dz∗dzdẑ∗dẑdη∗dηdγ∗dγ exp

{
Re
(
ẑT∂S̃p+ ηT∂∂S̃pγ

)}
, (71)

where η and γ are N-dimensional Grassmann fields. This can be more conveniently studied
using the method of superfields. For an overview of superfields applied to the p-spin spherical
models, see [13]. Our previous work deriving the complexity does not use superfields [6], but
they will be essential for compactly writing the two replica complexity in the next section,
and so we briefly introduce the technique here. Introducing the one-component Grassmann
variables θ and θ̄, define the superfield:

ϕ(1) = z+ θ̄(1)η+ γθ(1)+ ẑθ̄(1)θ(1), (72)

and its measure dϕ= dzdẑdηdγ. Then the expression for the number of stationary points can
be written in a compact form, as:

N =

ˆ
dϕ∗dϕ exp

{ˆ
d1Re S̃p(ϕ(1))

}
, (73)

where d1= dθ̄(1)dθ(1) denotes the integration over the Grassmann variables. This can be
related to the previous expression by expansionwith respect to the Grassmann variables, recog-
nizing that θ2 = θ̄2 = 0 restricts the series to two derivatives.

From here the process can be treated as usual, averaging over the couplings and replacing
bilinear combinations of the fields with their own variables via a Hubbard–Stratonovich trans-
formation. Defining the supermatrix:

Q(1,2) =
1
N

[
ϕ(1)Tϕ(2) ϕ(1)Tϕ(2)∗

ϕ(1)†ϕ(2) ϕ(1)†ϕ(2)∗

]
, (74)

the result can be written, neglecting constant factors, as an integral over Q like:

N ≃
ˆ
dQeNSeff(Q), (75)

where the effective action functional Seff of the supermatrix Q is:

Seff =
ˆ
d1d2Tr

(
1
4

[
1
4

1
4

1
4

1
4

]
Q(p)(1,2)− p

2

[
ϵ
2 0

0 ϵ∗

2

]
(Q(1,1)− I)δ(1,2)

)

+
1
2
logdetQ. (76)

The exponent in parentheses denotes element-wise exponentiation, and:

δ(1,2) = (θ̄(1)− θ̄(2))(θ(1)− θ(2)), (77)
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is the superspace δ-function, and the determinant and trace are a superdeterminant and super-
trace, respectively. Algebraically and under calculus they behave nearly like their non-super
counterparts. This leads to the condition for a saddle point of:

0=
∂Seff

∂Q(1,2)
=

p
16
Q(p−1)(1,2)− p

2

[
ϵ
2 0
0 ϵ∗

2

]
δ(1,2)+

1
2
Q−1(1,2), (78)

where the inverse supermatrix is defined by:

Iδ(1,2) =
ˆ
d3Q−1(1,3)Q(3,2). (79)

Convolving both sides by another supermatrix to remove the inverse, we arrive at the saddle
point equations:

0=
ˆ
d3

∂Seff
∂Q(1,3)

Q(3,2)

=
p
16

ˆ
d3Q(p−1)(1,3)Q(3,2)− p

2

[
ϵ
2 0
0 ϵ∗

2

]
Q(1,2)+

1
2
Iδ(1,2).

(80)

When expanded, the supermatrix Q contains nine independent bilinear combinations of the
original variables: z†z, ẑTz, ẑ†z, ẑTẑ, ẑ†ẑ, η†η, γ†γ, η†γ, and ηTγ. The saddle point equations
can be used to eliminate all but one of these, the ‘radius’ like term z†z. When combined with
the constraint, this term can be related directly to the magnitude of the imaginary part of z,
since z†z= xTx+ yTy= N+ 2yTy= N(1+ 2Y) for Y= ∥ Imz∥2/N= yTy/N. The complexity
can then be written in terms of r= z†z/N= 1+ 2Y as:

Σ= log(p− 1)− 1
2
log

(
1− r−2(p−1)

1− r−2

)
− (Reϵ)2

R2
+

− ( Imϵ)2

R2
−

+ Ip(ϵ/|ϵth|), (81)

where

R2
± =

p− 1
2

(rp−2 ± 1)
[
r2(p−1) ± (p− 1)rp−2(r2 − 1)− 1

]
1+ r2(p−2) [p(p− 2)(r2 − 1)− 1]

, (82)

and the function Ip(u) = 0 if |ϵ|2 < |ϵgap|2 and:

Ip(u) =

(
1
2
+

1
rp−2 − 1

)−1

(Reu)2 −
(
1
2
− 1
rp−2 + 1

)−1

( Imu)2

− log

(
rp−2

∣∣∣u+√u2 − 1
∣∣∣2)+ 2Re

(
u
√
u2 − 1

) , (83)

otherwise. The branch of the square roots are chosen such that the real part of the root has
the opposite sign as the real part of u, e.g. if Reu< 0 then Re

√
u2 − 1> 0. If the real part is

zero, then the sign is taken so that the imaginary part of the root has the opposite sign of the
imaginary part of u.

Contours of this complexity for the pure 3-spin are plotted in figure 11 for pure real and
imaginary energy. The thick black line shows the contour of zero complexity, where stationary
points are no longer found at large N. As the magnitude of the imaginary part of the spin taken
greater, more stationary points are found, and at a wider array of energies. This is also true in
other directions into the complex energy plane, where the story is qualitatively the same. At
any energy, the limit Y→∞ or r→∞ results in Σ= log(p− 1), which saturates the Bézout
bound on the number of stationary points a polynomial of order p can have [14].

Something more interesting is revealed if we zoom in on the complexity around the ground
state, shown in figure 12. Here, the region where most stationary points have a gapped hessian
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Figure 11. The complexity of the 3-spin spherical model in the complex plane, as a func-
tion of pure real and imaginary energy (left and right) and the magnitude Y= ∥ Imz∥2/N
of the distance into the complex configuration space. The thick black contour shows the
line of zero complexity, where stationary points become exponentially rare in N.

Figure 12. The complexity of the 3-spin spherical model in the complex plane, as a
function of pure real energy and the magnitude Y= ∥ Imz∥2/N of the distance into the
complex configuration space. The thick black contour shows the line of zero complexity,
where stationary points become exponentially rare inN. The shaded region shows where
stationary points have an ungapped spectrum. The complexity of the 3-spin model on
the real sphere is shown below the horizontal axis; notice that it does not correspond
with the limiting complexity in the complex configuration space below the threshold
energy.
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is shaded. The line ϵgap separating gapped from ungapped spectra corresponds to the threshold
energy ϵth in the limit of Y→ 0. Above the threshold, the limit of the complexity as Y→ 0
(or equivalently r→ 1) also approaches the real complexity, plotted under the horizontal axis.
However, below the threshold this is no longer the case: here the limit of Y→ 0 of the com-
plexity of complex stationary points corresponds to the complexity Σk=1 of rank one saddles
in the real problem, and their complexity becomes zero at ϵk=1, where the complexity of rank
one saddles becomes zero [11].

There are several interesting features of the complexity. First is this inequivalence between
the real complexity and the limit of the complex complexity to zero complex part. It implies,
among other things, a desert of stationary points in the complex plan surrounding the lowest
minima, something we shall see more explicitly in the next section. Second, there is only a
small collection of stationary points that appear with positive complexity and a gapped spec-
trum: the small region in figure 12 that is both to the right of the thick line and brightly shaded.
We suspect that these are the only stationary points that have any hope of avoiding participation
in Stokes points.

4.3. Pure p-spin: where are my neighbors?

The problem of counting the density of Stokes points in an analytic continuation of the spher-
ical models is quite challenging, as the problem of finding dynamic trajectories with endpoints
at stationary points is already difficult, and oncemade complex the problem has twice the num-
ber of fields squared.

In this section, we begin to address the problem heuristically by instead asking: if you are
at a stationary point, where are your neighbors? The stationary points geometrically nearest
to a given stationary point should make up the bulk of its adjacent points in the sense of being
susceptible to Stokes points. The distribution of these near neighbors in the complex config-
uration space therefore gives a sense of whether many Stokes lines should be expected, and
when.

To determine this, we perform the same Kac–Rice procedure as in the previous section,
but now with two probe points, or replicas, of the system. The simplify things somewhat, we
will examine the case where the only second probe is complex; the first probe will be on the
real sphere. The number of stationary points with given energies ϵ1 ∈ R and ϵ2 ∈ C are, in the
superfield formulation,

N (2) =

ˆ
dϕ1 dϕ

∗
2 dϕ2 exp

{ˆ
d1
[
S̃p(ϕ1(1))+ Re S̃p(ϕ2(1))

]}
, (84)

and we expect to find a two-spin complexity counting pairs of the form:

Σ(2) = lim
N→∞

1
N

logN (2), (85)

which depends on the two energies and onmutual geometric invariants of the two probe points.
The calculation follows exactly as before, but with an additional field. The average over J is
taken, and the supermatrix:

Q(1,2) =

ϕ1(1)Tϕ1(2) ϕ1(1)Tϕ2(2) ϕ1(1)Tϕ2(2)∗

ϕ2(1)Tϕ1(2) ϕ2(1)Tϕ2(2) ϕ2(1)Tϕ2(2)∗

ϕ2(1)†ϕ1(2) ϕ2(1)†ϕ2(2) ϕ2(1)†ϕ2(2)∗

 , (86)
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is inserted with a Hubbard–Stratonovich transformation. The average number of pairs can then
be written in the form:

N (2) ∝
ˆ
dQeNSeff[Q], (87)

for the effective action:

Seff =
ˆ
d1d2Tr

1
4

1
1
2

1
2

1
2

1
4

1
4

1
2

1
4

1
4

Q(p)(1,2)

−p
2

ϵ1 0 0

0 1
2ϵ2 0

0 0 1
2ϵ

∗
2

(Q(1,1)− I)δ(1,2)

+
1
2
detQ.

(88)

Differentiating this with respect to Q, one finds the saddle point equations:

0=
∂Seff

∂Q(1,2)
=
p
4

1
1
2

1
2

1
2

1
4

1
4

1
2

1
4

1
4

⊙Q(p−1)(1,2)

− p
2

ϵ1 0 0

0 1
2ϵ2 0

0 0 1
2ϵ

∗
2

δ(1,2)+ 1
2
Q−1(1,2), (89)

where ⊙ denotes element-wise multiplication. These are simplified by convolution to remove
the superinverse, finally giving:

0=
ˆ
d3

∂Seff
∂Q(1,3)

Q(3,2)

=
p
4

ˆ
d3


1

1
2

1
2

1
2

1
4

1
4

1
2

1
4

1
4

⊙Q(p−1)(1,3)

Q(3,2)

− p
2

ϵ1 0 0

0 1
2ϵ2 0

0 0 1
2ϵ

∗
2

Q(1,2)+ 1
2
Iδ(1,2).

(90)

Despite being able to pose the saddle point problem in a compact way, a great deal of complex-
ity lies within. The supermatrix Q depends on 35 independent bilinear products, and when the
superfields are expanded produces 48 (not entirely independent) equations. These equations
can be split into 30 involving bilinear products of the fermionic fields and 18 without them.
The 18 equations without fermionic bilinear products can be solved with a computer algebra
package to eliminate 17 of the 20 non-fermionic bilinear products. The fermionic equations
are unfortunately more complicated.

They can be simplified somewhat by examination of the real two-replica problem. There,
all bilinear products involving fermionic fields from different replicas, like ηT1η2, vanish. This
is related to the influence of the relative position of the two replicas to their spectra, with
the vanishing being equivalent to having no influence, i.e. the value of the determinant at each
stationary point is exactly what it would be in the one-replica problemwith the same invariants,
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e.g. energy and radius. Making this ansatz, the equations can be solved for the remaining 5
bilinear products, eliminating all the fermionic fields.

This leaves two bilinear products: z†2z2 and z†2z1, or one real and one complex number. The
first is the radius of the complex saddle, while the other is a complex generalization of the
overlap. For us, it will be more convenient to work in terms of the difference ∆z= z2 − z1
and the constants which characterize it, which are∆=∆z†∆z/N= ∥∆z∥2/N and γ = ∆zT∆z

∥∆z∥ .
Once again we have one real (and strictly positive) variable ∆ and one complex variable γ.

Though the value of γ is bounded by |γ|⩽ 1 as a result of the inequality |∆zT∆z|⩽ ∥∆z∥2,
in reality this bound is not the relevant one, because we are confined on the manifold N= zTz.
The relevant bound is most easily established by returning to a 2N-dimensional real problem,
with x= x1 and z= x2 + iy2. The constraint gives xT2y2 = 0, xT1x1 = 1, and xT2x2 = 1+ yT2y2.
Then, by their definitions:

∆= 1+ xT2x2 + yT2y2 − 2xT1x2 = 2(1+ yT2y2 − xT1x2). (91)

Define θxx as the angle between x1 and x2. Then xT1x2 = ∥x1∥∥x2∥cosθxx =
√

1−∥y2∥cosθxx,
and:

∆= 2

(
1+ ∥y2∥2 −

√
1−∥y2∥2 cosθxx

)
. (92)

The definition of γ likewise gives:

γ∆= 2− 2xT1x2 − 2ixT1y2 = 2(1−∥x2∥cosθxx− i∥y2∥cosθxy)

= 2

(
1−

√
1−∥y2∥2 cosθxx− i∥y2∥cosθxy

)
,

(93)

where θxy is the angle between x1 and y2. There is also an inequality between the angles θxx and
θxy between x1 and x2 and y2, respectively, which takes that form cos2 θxy+ cos2 θxx ⩽ 1. This
results from the fact that x2 and y2 are orthogonal, a result of the constraint. These equations
along with the inequality produce the required bound on |γ| as a function of∆ and argγ, which
is plotted in figure 13.

A lot of information is contained in the full two-replica complexity, but we will focus on the
following question: what does the population of stationary points nearby a given real stationary
point look like? We think this is a relevant question for the tendency for Stokes lines, for the
following reason. To determine whether two given stationary points, when tuned to have the
same imaginary energy, will share a Stokes line, one needs to solve what is known as the global
connection problem. As we have seen in section 2.3, this as a question of a kind of topological
adjacency: two points will not share a Stokes line if a third intervenes with its thimble between
them. We reason that the number of adjacent stationary points of a given stationary point for
a generic function in D complex dimensions scales algebraically with D. Therefore, if the
collection of nearest neighbors has a nonzero complexity, i.e. scales exponentially with D,
crowding around the stationary point in question, then these might be expected to overwhelm
the possible adjacencies, and so doing simplify the problem of determining the properties of
the true adjacencies. Until the nonlinear flow equations are solved with dynamical mean field
theory as has been done for instantons [15], this is the best heuristic.

For all displacements ∆ and real energies ε1, the maximum complexity is found for some
real values of ε2 and γ. Therefore we can restrict our study of the most common neighbors
to this. Note that the real part of γ has a geometric interpretation in terms of the properties of
the neighbors: if a stationary point sits in the complex configuration space near another, Reγ
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Figure 13. Left: the line bounding γ in the complex plane as a function of ∆=
0,1,2, . . . ,6 (outer to inner). Notice that for∆⩽ 4, |γ|= 1 is saturated for positive real
γ, but is not for∆> 4, and∆= 4 has a cusp in the boundary. This is due to∆= 4 cor-
responding to the maximum distance between any two points on the real sphere. Right:
the two-spin complexity for ∆= 4 and some energy ϵ1 = ϵ2. It approaches −∞ at the
boundary.

Figure 14. The geometric definition of the angle φ, between the displacement between
two stationary points and the real configuration space.

can be related to the angle φmade between the vector separating these two points and the real
configuration space as:

φ= arctan

√
1−Reγ
1+ Reγ

. (94)

The geometry described above is visualized in figure 14. Having concluded that the most pop-
ulous neighbors are confined to real γ, we will make use of this angle instead of γ, which has
a more direct geometric interpretation.
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Figure 15. The scaled two-replica complexityΣ(2) as a function of angleφwith ϵ2 = ϵ1,
∆= 2−7, and various ε1. At the threshold, the function undergoes a geometric transition
and becomes sharper with decreasing ∆.

Figure 16. The scaled two-replica complexity Σ(2) as a function of angle φ for various
∆, ϵ2 = ϵ1, and left: ϵ1 = ϵth + 0.001, center: ϵ1 = ϵth, right: ϵ= ϵth − 0.001. All lines
have been normalized by the complexity Σk⩾2 of index 2 and greater saddles of the real
3-spin model.

First, we examine the importance of the threshold. Figure 15 shows the two-replica com-
plexity evaluated at ∆= 2−4 and equal energy ϵ2 = ϵ1 as a function of φ for several ε1 as the
threshold is passed. The curves are rescaled by the complexityΣk⩾2(ϵ1) of index 2 and greater
saddles in the real problem, which is what is approached in the limit as ∆ to zero. Below the
threshold, the distribution of nearby saddles with the same energy by angle is broad and peaked
around φ= 45◦, while above the threshold it is peaked strongly near the maximum φ allowed
by the bound. At the threshold, the function becomes extremely flat.

One can examine the scaling of these curves as∆ goes to zero in figure 16. Both above and
below the threshold, one finds a quickly-converging limit of (Σ(2)/Σk⩾2 − 1)/∆. Above the
threshold, these curves converge to a function whose peak is always precisely at 45◦, while
below they converge to a function with a peak that grows linearly with ∆−1 at 90◦. At the
threshold, the scaling is different, and the function approaches a flat function extremely rapidly,
as ∆3.
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Figure 17. The two-replica complexity Σ(2) scaled by Σk=1 as a function of angle φ
for various ∆ at ϵ1 = ϵk=2, the point of zero complexity for rank-two saddles in the
real problem. Solid lines: the complexity evaluated at the value of ε2 which leads to the
largest maximum value. As ∆ varies this varies like ϵ2 − ϵ1 ∝∆2. Dashed lines: the
complexity evaluated at ϵ2 = ϵ1.

Thus, there is an abrupt geometric transition in the population of nearest neighbors as the
threshold is crossed: above they are broadly distributed at all angles, while below they are
highly concentrated around 90◦. From this analysis it appears that the complexity of the nearest
neighbors, at zero distance, behaves as that of the index-2 saddles at all angles, which would
imply that the nearest neighbors vanish at the same point as the index-2 saddles. However, this
is not the case: we have only shown that this is how the neighbors at identical energy scale,
which is correct above the threshold, but no longer underneath.

If an energy is taken under the threshold and the two-replica complexity maximized with
respect to both ε2 and φ, one finds that as ∆→ 0, ϵ2 → ϵ1, as must be the case the find a
positive complexity at zero distance, but the maximum is never at ϵ2 = ϵ1, but rather at a small
distance ∆ϵ that decreases with decreasing ∆ like ∆2. This is shown in figure 17. When the
complexity is maximized in both parameters, one finds that, in the limit as∆→ 0, the peak is
at 90◦ but has a height equal to Σk=1, the complexity of rank-1 saddles.

Below ϵk=1, where the rank-1 saddle complexity vanishes, the complexity of stationary
points of any type at zero distance is negative. To find what the nearest population looks like,
one must find the minimum ∆ at which the complexity is nonnegative, or:

∆min = argmin∆

(
0⩽max

ϵ2,φ
Σ(2)(ϵ1, ϵ2,∆,φ)

)
. (95)

The result in ∆min and the corresponding φ that produces it is plotted in figure 19. As the
energy is brought below ϵk=1, ϵ2 − ϵ1 ∝−|ϵ1 − ϵk=1|2,φ− 90◦ ∝−|ϵ1 − ϵk=1|1/2, and∆min ∝
|ϵ1 − ϵk=1|. The fact that the population of nearest neighbors has an energy lower than the
stationary point gives some hope for the success of continuation involving these points: since
Stokes points only lead to a change in weight when they involve upward flow from a point
that already has weight, neighbors that have a lower energy will not be eligible to be involved
in a Stokes line that causes a change of weight until the phase of β has rotated almost 180◦.
The energy of nearest neighbors is plotted in figure 18, while their angular distribution and
distance is plotted in figure 19.
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Figure 18. The energy ε2 of the nearest neighbor stationary points in the complex plane
to a given real stationary point of energy ε1. The dashed line shows ϵ2 = ϵ1. The nearest
neighbor energy coincides with the dashed line until ϵk=1, the energy where rank-one
saddles vanish, where it peels off.

4.4. Pure p-spin: numerics

To study Stokes lines numerically, we approximated them by parametric curves. If z0 and z1
are two stationary points of the action with ReS(z0)> ReS(z1), then we take the curve:

z(t) = (1− t)z0 + tz1 +(1− t)t
m∑
i=0

giP
(1,1)
i (2t− 1), (96)

where the gs are undetermined complex vectors and the P(1,1)
i (x) are the Jacobi polynomials,

orthogonal on the interval [−1,1] under the weight (1− x)(1+ x). The Jacobi polynomials are
used because they are orthogonal with respect to integration over precisely the term they appear
inside above. These are fixed by minimizing a cost function, which has a global minimum only
for Stokes lines. Defining:

L(t) = 1− Re [ż(z(t))†z ′(t)]
|ż(z(t))||z ′(t)|

, (97)

where ż(z) is the flow at z given by (7), this cost is given by:

C =

ˆ 1

0
dtL(t), (98)

C has minimum of zero, which is reached only by functions z(t) whose tangent is everywhere
parallel to the direction ż of the dynamics. Therefore, functions that satisfy C = 0 are time-
reparameterized Stokes lines.
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Figure 19. The properties of the nearest neighbor saddles in the 3-spin model as a func-
tion of energy ε. Above the threshold energy ϵth, stationary points are found at arbitrarily
close distance and at all angles φ in the complex plane. Below ϵth but above ϵk=2, sta-
tionary points are still found at arbitrarily close distance and all angles, but there are
exponentially more found at 90◦ than at any other angle. Below ϵk=2 but above ϵk=1,
stationary points are found at arbitrarily close distance but only at 90◦. Below ϵk=1,
neighboring stationary points are separated by a minimum squared distance ∆min, and
the angle they are found at drifts. The complexity of nearest neighbors in the shaded
region is Σk⩾2, while along the solid line for ϵ > ϵk=1 it is Σk=1. Below ϵk=1 the com-
plexity of nearest neighbors is zero.

We explicitly computed the gradient and hessian of C with respect to the parameter vectors
g. Stokes lines are found or not between points by using the Levenberg–Marquardt algorithm
starting from gi = 0 for all i, and approximating the cost integral by a finite sum. To sample
nearby stationary points and assess their propensity for Stokes points, we do the following.
First, a saddle-finding routine based on Newton’s method is run on the real configuration space
of the p-spin model. Then, a saddle-finding routine is run on the complex configuration space
in the close vicinity of the real saddle, using random initial conditions in a slowly increasing
radius of the real stationary point. When this process finds a new distinct stationary point, it is
finished. This method of sampling pairs heavily biases the statistics we report here in favor of
seeing Stokes points.

Once a pair of nearby stationary points has been found, one real and one in the complex
plane, their energies are used to compute the phase θ necessary to give β in order to set their
imaginary energies to the same value, a necessary condition for a Stokes line. A straight line
(ignoring even the constraint) is thrown between them and then minimized using the cost func-
tion (98) for some initial m= 5. Once a minimum is found, m is iteratively increased several
times, each time minimizing the cost in between, until m= 20. If at some point in this process
the cost blows up, indicating that the solution is running away, the pair is thrown out; this
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Figure 20. The probability PStokes that a real stationary point will share a Stokes line
with its randomly chosen neighbor as a function of |λmin|, the magnitude of the min-
imum eigenvalue of the hessian at the real stationary point. The horizontal axis has been
rescaled to collapse the data at different system sizes N.

happens infrequently. At the end, there are several ways to assess whether a given minimized
line is a Stokes line: the value of the cost, the integrated deviation from the constraint, and
the integrated deviation from constant phase. Among minimized lines these values fall into
doubly-peaked histograms that well-separate prospective Stokes lines into ‘good’ and ‘bad’
values for the given level of approximation m.

One cannot explicitly study the effect of crossing various landmark energies on the p-spin
in the system sizes that were accessible to our study, up to around N= 64, as the presence of,
e.g. the threshold energy, is not noticeable until much larger size [16]. However, we are able
to examine the effect of its symptoms: namely, the influence of the spectrum of the stationary
point in question on the likelihood that a randomly chosen neighbor will share a Stokes line.

Data for the likelihood of a Stokes line as a function of the empirical gap |λmin| of the real
stationary point is shown in figure 20. There, one sees that the probability of finding a Stokes
line with a near neighbor falls off as an exponential in themagnitude of the smallest eigenvalue.
As a function of system size, the tail contracts like N−1/2, which means that in the thermo-
dynamic limit one expects the probability of finding such a Stokes line will approach zero
everywhere expect where λmin ≪ 1. This supports the idea that gapped minima are unlikely to
see Stokes lines.

We can also see that as the empirical gap is increased, Stokes points tend to occur at very
large phases. This can be seen forN= 32 in figure 21, which shows the probability distribution
of Stokes lines discovered as a function of phase |θ| necessary to reach them. The curves are
broken into sets representing different bins of the empirical gap |λmin|. As the empirical gap
grows, Stokes points become depleted around small phases and concentrate on very large ones.
This supports the idea that around the gapped minima, Stokes points will be concentrated at
phases that are nearly 180◦, where the two-replica calculation shows that almost all of their
nearest neighbors will lie.
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Figure 21. The probability density function for identified Stokes points as a function
of |θ|, the magnitude of the phase necessary to add to β to reach the Stokes point, at
N= 32 and for several binned |λmin|. As the empirical gap is increased, the population
of discovered Stokes points becomes more concentrated around |θ|= π.

4.5. Pure p-spin: is analytic continuation possible?

After all this work, one is motivated to ask: can analytic continuation be done in even a simple
complex model like the pure p-spin? Numeric and analytic evidence indicates that the project
is hopeless if ungapped stationary points take a significant weight in the partition function,
since for these Stokes lines proliferate at even small continuation and there is no hope of
tracking them. However, for gapped stationary points we have seen compelling evidence that
suggests they will not participate in Stokes points, at least not until a large phase rotation of
the parameter being continued. This gives some hope for continuation of the low-temperature
thermodynamic phase of the p-spin, where weight is concentrated in precisely gapped minima.

Recalling our expression (32) for the single-thimble contribution to the partition function
expanded to lowest order in large |β|, we can write for the p-spin after an infinitesimal rotation
of β into the complex plane (before any Stokes points have been encountered):

Z=
∑
σ∈Σ0

nσZσ

≃
∑
σ∈Σ0

(
2π
β

)D/2

ikσ |detHessS(sσ)|−
1
2 e−βS(sσ)

≃
D∑
k=0

ˆ
dϵNtyp(ϵ,k)

(
2π
β

)D/2

ik|detHessS(ϵ,k)|− 1
2 e−βNϵ,

(99)

whereNtyp(ϵ,k) is the typical number of stationary points in a sample of the real p-spin model
in the energy range ε to ϵ+ dϵ and with index k. Following Derrida [17], this is related to the
average number of stationary points in this range at large N by:

Ntyp(ϵ,k) =N (ϵ,k)+ η(ϵ,k)N (ϵ,k)1/2, (100)

where η is a random, sample-dependant number of order one. This gives two terms to the
typical partition function:

Ztyp = ZA+ZB, (101)
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where

ZA ≃
D∑
k=0

ˆ
dϵN (ϵ,k)

(
2π
β

)D/2
ik|detHessS(ϵ,k)|−

1
2 e−βNϵ =

ˆ
dϵeNfA(ϵ) (102)

ZB ≃
D∑
k=0

ˆ
dϵη(ϵ,k)N (ϵ,k)1/2

(
2π
β

)D/2

ik|detHessS(ϵ,k)|− 1
2 e−βNϵ (103)

=

ˆ
dϵ η̃(ϵ)eNfB(ϵ), (104)

for functions f A and f B defined by:

fA =−βϵ+Σ(ϵ)− 1
2

ˆ
dλρ(λ | ϵ)|λ|+ 1

2
log

2π
β

+ i
π

2
P(λ < 0 | ϵ) (105)

fB =−βϵ+
1
2
Σ(ϵ)− 1

2

ˆ
dλρ(λ | ϵ)|λ|+ 1

2
log

2π
β

+ i
π

2
P(λ < 0 | ϵ), (106)

and where P(λ < 0 | ϵ) is the cumulative probability distribution of the eigenvalues of the
spectrum given ε,

P(λ < 0 | ϵ) =
ˆ 0

−∞
dλ ′ ρ(λ ′ | ϵ), (107)

and produces the macroscopic index k/N. Each integral will be dominated by its value near the
maximum of the real part of the exponential argument. Assuming that ϵ < ϵth, this maximum
occurs at:

0=
∂

∂ϵ
Re fA

∣∣∣∣
ϵ=ϵmax

=−Reβ− 1
2
3p− 4
p− 1

ϵmax +
1
2

p
p− 1

√
ϵ2max − ϵ2th, (108)

0=
∂

∂ϵ
Re fB

∣∣∣∣
ϵ=ϵmax

=−Reβ− ϵmax. (109)

As with the 2-spin model, the integral over ε is oscillatory and can only be reliably evaluated
with a saddle point when either the period of oscillation diverges or when the maximum lies
at a cusp. We therefore expect changes in behavior when ϵmax = ϵk=0, the ground state energy.
The temperature at which this happens is:

ReβA =−1
2
3p− 4
p− 1

ϵk=0 +
1
2

p
p− 1

√
ϵ2k=0 − ϵ2th (110)

ReβB =−ϵk=0, (111)

which for all p⩾ 2 has ReβA ⩾ ReβB. Therefore, the emergence of zeros in ZA does not lead
to the emergence of zeros in the partition function as a whole, because ZB still produces a
coherent result (despite the unknown constant factor η̃(ϵk=0)). It is only at ReβB =−ϵk=0

where both terms contributing to the partition function at large N involve incoherent integrals
near the maximum, and only here where the density of zeros is expected to become nonzero.

In fact, in the limit of |β| →∞, ReβB is precisely the transition found in [9] between phases
with and without a density of zeros, plotted in figure 22. This value is an underestimate for
the transition for finite |β|, which likely results from the invalidity of our large-β approxima-
tion. More of the phase diagram might be constructed by continuing the series for individual
thimbles to higher powers in β, which would be equivalent to allowing non-constant terms in
the Jacobian of the coordinate transformation over the thimble.

This zeroth-order analysis for the p-spin suggests that analytic continuation can be some-
times done despite the presence of a great many complex stationary points. In particular, when
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Figure 22. Phases of the 3-spin model in the complex-β, following Obuchi and
Takahashi [9]. The phase P2 contains a nonzero density of zeros of the partition function,
while the ‘spin-glass’ phase SG does not. Analytic continuation via thimbles correctly
predicts the boundary between these two phases when |β| ≫ 1 to be Reβ =−ϵ0, shown
with a dashed line.

weight is concentrated in certain minima Stokes lines do not appear to interrupt the proceed-
ings. How bad the situation is in other regimes, like for smaller |β|, remains to be seen: our
analysis cannot tell between the effects of Stokes points changing the contour and the large-|β|
saddle-point used to evaluate the thimble integrals. Taking the thimbles to the next order in β
may reveal more explicitly where Stokes points become important.

5. Conclusion

We have reviewed the Picard–Lefschetz technique for analytically continuing integrals and
examined its applicability to the analytic continuation of configuration space integrals over the
pure p-spin models. The evidence suggests that analytic continuation is possible when weight
is concentrated in gapped minima, who seem to avoid Stokes points, and is likely intractable
otherwise.

This has implications for the ability to analytically continue other types of theories. For
instance, marginal phases of glasses, spin glasses, and other problems are characterized by
concentration in pseudogapped minima. Based on the considerations of this paper, we sus-
pect that analytic continuation is never tractable in such a phase, as Stokes points will always
proliferate among even the lowest minima.

It is possible that a statistical theory of analytic continuation could be developed in order
to treat these cases, whereby one computes the average or typical rate of Stokes points as a
function of stationary point properties, and treats their proliferation to complex saddles as a
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structured diffusion problem. This would be a very involved calculation, involving counting
classical trajectories with certain boundary conditions, but in principle it could be done as in
[15]. Here the scale of the proliferation may rescue things, allowing accurate statements to be
made about its average effect.
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